

Digital ASIC Fabrication
Design Document

sdmay25-28

Client & Faculty Advisor: Dr. Henry Duwe

Camden Fergen

John Huaracha

Nicholas Lynch

Calvin Smith

Levi Wenck

sdmay25-28@iastate.edu

sdmay25-28.sd.ece.iastate.edu

Revised: December 7th 2024

Version 1.3

sdmay25-28 | 2

Executive Summary
There are not many ways for students to experience, learn, and participate in Digital

ASIC design. Thankfully, due to the introduction of open-source tools and designs such as
Caravel Harness and OpenLANE, ASIC design is achievable for undergraduate students. Our
project will be leveraging these tools to make a digital ASIC of our own. We aim to create a
RISC-V processor that supports customizable instructions programmed by the user. We
hope our project can help students learn about Computer Hardware and Digital IC design by
providing a hands-on digital IC that students can experiment with and learn from. We hope
our project can also serve as a jumping off point for new students who may want to try digital
IC design.

 To complete our project, we are utilizing the open-source tools and designs from
Efabless. We are using a CGRA integrated into a RISC-V core to extend the RISC-V ISA. There
have been a handful of decisions made for our design: We have chosen to use the PicoRV32
as our RISC-V core, DFFRAM for On-Chip Memory, and have completed a high-level design
for our project. We have put time into learning all of the open-source tools provided by
Efabless to ensure we can finish our project by the end of May.

 We are currently working on finishing the CyGRA and other modules, this will make
sure that we are on track to complete our design. The goal for our CGRA is to accelerate
custom instructions that use Taylor expansions. This will help us create custom instructions
that manage trigonometric functions, exponentials, logarithms, and more. After all modules
are completed, we will move on to integrating them into a top-level design and begin testing.
After we fully test and confirm functionality, we will set our project to be fabricated in April.

sdmay25-28 | 3

Learning Summary

Development Standards & Practices Used
EEE 1754-1994: IEEE Standard for a 32-bit Microprocessor Architecture

IEEE 1364-2001: IEEE Standard Verilog Hardware Description Language

IEEE 1364.1-2002: IEEE Standard for Verilog Register Transfer Level Synthesis

Summary of Requirements
• Project must be compatible with the Efabless process
• Entire project must be open source
• Function as a RISC-V processor when provided with RISC-V instructions
• Support custom instructions defined by the user
• Stores and runs programs provided by the user
• HDL used is Verilog

Applicable Courses from Iowa State University Curriculum
• CPRE 2810 — Digital Logic
• CPRE 2880 — Embedded Systems
• CPRE 3810 — Computer Organization and Assembly Level Programming
• CPRE 4870 — Hardware Design for Machine Learning
• CPRE 4880 — Embedded Systems Design
• EE/CPRE 3300 — Integrated Electronics
• EE/CPRE 4650 — Digital VLSI Design

New Skills/Knowledge acquired that was not taught in courses
Skills:

• ASIC Chip Design
• Chip Fabrication
• How to use open-source tools

Tools:
• Caravel Harness
• CocoTB
• Magic DRC
• Netgen LVS
• OpenROAD
• Vivado

sdmay25-28 | 4

Table of Contents
Introduction ... 8

Problem Statement ... 8

Intended Users .. 9

Chip Forge Club Member .. 9

Hardware Students .. 9

Professors ... 9

Professionals ... 9

Requirements, Constraints, And Standards .. 9

Requirements & Constraints .. 9

Engineering Standards ... 10

Project Plan .. 11

Project Management/Tracking Procedures .. 11

Task Decomposition .. 11

Project Proposed Milestones, Metrics, and Evaluation Criteria 13

Project Timeline/Schedule .. 14

Risks and Risk Management/Mitigation ... 16

Personnel Effort Requirements ... 17

Other Resource Requirements ... 17

Design .. 18

Design Context .. 18

Broader Context ... 18

Prior Work/Solutions .. 19

Technical Complexity ... 21

Design Exploration... 21

Design Decisions ... 21

Ideation ... 22

Decision-Making and Trade-Off ... 22

Proposed Design ... 24

sdmay25-28 | 5

Overview ... 24

Detailed Design and Visuals .. 25

Functionality .. 29

Areas of Concern and Development .. 29

Technology Considerations .. 30

Design Analysis .. 30

Testing ... 30

Unit Testing ... 30

Interface Testing .. 30

Integration Testing ... 31

System Testing .. 31

Regression Testing ... 31

Acceptance Testing ... 31

Results ... 31

Implementation .. 32

Professional Responsibility .. 34

Areas of Professional Responsibility/Codes of Ethics ... 34

Four Principles .. 36

Virtues .. 37

Closing Material .. 39

Conclusion ... 39

References ... 40

Appendices ... 40

Team .. 41

Team Members ... 41

Required Skills Sets ... 41

Skills Set Covered by the Team ... 41

Project Management Style Adopted by the Team ... 41

Initial Project Management Roles.. 42

sdmay25-28 | 6

Team contract ... 42

sdmay25-28 | 7

List of Symbols and Definitions
Efabless - Open-source fabrication company that will fabricate our chip, and provide us
with design resources/tools

Caravel Harness - Provided wrapper around our design which includes an SoC

ASIC - Application-Specific Integrated Circuit

RISC-V – Open-source ISA

PicoRV32 - A Size-Optimized RISC-V CPU

Chip Forge – ISU Club focused on developing and bringing up ASICs

CGRA – Coarse Grained Reconfigurable Architecture, a reconfigurable architecture that
operates on coarser granularity than traditional reconfigurable architectures such as FPGA

SPI - Serial Peripheral Interface

PCB - Printed Circuit Board

FPGA - Field Programmable Gate Array, is a reprogrammable integrated circuit

Verilog HDL - Verilog Hardware Description Language

SoC - System on chip

SkyWater 130nm - Fabrication process used by Efabless

User Area - Our design space within the Caravel Harness

Management Area - Part of the Caravel Harness that includes management utilities, SoC,
and logic analyzer probes

OpenLane - The collection of open-sourced tools provided by Efabless

sdmay25-28 | 8

Introduction

Problem Statement

Processors are limited by their defined instruction sets. If you want to perform or test an
operation that is not supported in the instruction set, you will have to redesign the
processor and refabricate it to support that operation (expensive and time-consuming),
approximate the operation by using multiple instructions (slow and/or inaccurate), or avoid
doing that operation entirely. These options are not acceptable in many situations. There
are no current processors that are suited to learning processor design due to the lack of
low-level intractability and modification of most processors, forcing students and
professors to utilize other options. To solve this, we aim to design a RISC-V processor that
supports the use of a custom instruction defined by the user, which would allow a user to
directly program the processor to support any desired instruction. We aim for this
instruction to be as customizable as possible, allowing the user high flexibility when
programming their instruction.

Figure 1: Caravel Chip Design

To design our ASIC, we will use Efabless’s Caravel and OpenROAD. Caravel is a harness
we can insert our project into. Caravel provides a management area controlled by a
VexRISCV processor and includes logic analyzers, interrupt pins, a wishbone bus, a clock,
and a reset. We will use these to aid in our design which will be placed in the user space.
OpenROAD is a compilation of tools that generates a layout from Verilog files and performs
DRC, LVS, and STA tests.

sdmay25-28 | 9

Intended Users

Chip Forge Club Member

Chip Forge is a student organization at Iowa State University dedicated to designing analog
and digital ASICs. Each member has an interest in designing, testing, and/or fabricating
ASICs. The club uses Caravel, so students need resources to help learn about it. Our
project will provide students with an interactable ASIC to learn about the Caravel chip and
serve as a potential jumping-off point for their projects.

Hardware Students

Hardware students encompass all students learning about digital hardware design in
classes like CPRE 2810, CPRE 3810, or CPRE/EE 4650. These students need ways to learn
about ISAs and test new instructions for a processor. The ways students learn about these
topics is through software and FPGAs. Our project will provide a way for students to learn
these things on a physical processor, which will aid in the education of many hardware
students. Our project will also aid future students who use the Efabless process and
Caravel chip in future senior design projects.

Professors

Professors are interested in instructing their students and need new teaching methods.
Our project provides an interactive way to teach students about RISC-V, ISAs, and
microprocessors. Our project will expand professors' teaching options and allow them to
instruct their students more effectively.

Professionals

Professionals are interested in accelerating computation and finding new ways to solve
computational problems. Our modifiable instruction will allow users to circumvent
specific problems that may be difficult to solve using traditional processors due to
instructions not being natively supported on hardware. Our modifiable instruction will
allow for hardware acceleration of many tasks, reducing the cycles needed to perform
those tasks, therefore cutting down the time spent executing those tasks.

Requirements, Constraints, And Standards

Requirements & Constraints

Functional requirements:

• Function as a RISC-V processor when provided with RISC-V instructions.

sdmay25-28 | 10

• Support custom instructions defined by the user.
• Custom instructions should only be executed when called (should not execute

custom instructions when provided standard RISC-V instructions).
• Stores and runs programs provided by the user.

Technical requirements:

• HDL used is Verilog
• Custom instruction execution should not slow down the processer.
• Programming a new instruction should take minimal time.
• Max clock frequency of 40 MHz (constraint).
• The microcontroller is programmed using C.
• Design should pass LVS and DRC test before sending off to be fabricated.
• The RISC-V processor used must be open-source.
• Tapeout in the 130 nm skywater process

User experiential requirements:

• Product should be user-friendly to program custom instructions and load in
programs.

• Product should provide a wide range of settings that cater to different user
experience levels.

• It should be easy to test custom instructions and programs.
• Custom instruction assembly code should be structured and loaded like a standard

RISC-V instruction.

Physical:

• Must function at room temperature (≈20°C).
• User project must be 3mm x 3.6mm to fit in user project area (constraint).
• Must use I/O pins provided by project wrapper (constraint).

Engineering Standards
Engineering standards are important to adhere to when designing products. Standards
ensure that your product is consistent with the industry, allowing easier use for users and
others in the industry that may work on your product later. For our project, we will be using
standards laid out by IEEE.

EEE 1754-1994: IEEE Standard for a 32-bit Microprocessor Architecture

Since we are designing a 32-bit Microprocessor, it is important for our project to adhere to
the pre-established standards from IEEE. We be careful to ensure that we adhere to this
standard when adding our custom function unit.

sdmay25-28 | 11

IEEE 1364-2001: IEEE Standard Verilog Hardware Description Language

The Efabless process requires the use of Verilog for our design. Using this, we will ensure
our Verilog code adheres to the industry standard.

IEEE 1364.1-2002: IEEE Standard for Verilog Register Transfer Level Synthesis

Our project will use RTL synthesis to translate our Verilog code to a hardened design. Using
this, we can write code that best works with RTL synthesis to ensure correctness and
efficiency.

Wishbone Bus

Our project will use the WISHBONE protocol as implemented by Efabless to communicate
between devices on chip and in the management area, the Efabless process has this
protocol implemented as a non-option, with slight variations from the OpenCores
WISHBONE.

SPI Protocol

The SPI Protocol de facto standard is a serial communication bus that was developed by
Motorola in the 1980s with a master-slave configuration that is commonly used in SD
cards, it consists of four logic signals; CS, SCLK, MOSI, MISO. For our project the SPI
Protocol will be used to communicate between off-chip memory and on-chip memory (the
slaves) via a memory interface which acts as the master.

Project Plan

Project Management/Tracking Procedures
Our team will be using an agile management style for project planning. This allows our
team to have structured goals with clear deadlines and milestones to reach, while also
ensuring our team is provided with the flexibility needed to accommodate any unexpected
difficulties that may arise during development.

Our team will track the progress through communication on Microsoft Teams and Discord
as well as shared files in the SharePoint associated with the Teams. Additionally, we will be
using GitLab for version control of code base and tracking any specific issues found in the
code.

Task Decomposition
Our project is split up into the following tasks which will be completed in sequential order:

sdmay25-28 | 12

1. Project Prep
a. Setup virtual machines to complete design work on
b. Setup Gitlab repos to hold source code and GitLab modules
c. Become familiar with the Efabless tools

i. OpenLane
ii. Caravel

d. Successfully harden and verify a test design
2. November Chip Design

a. Decide on a design/component to place onto to chip framework
b. Harden chosen design
c. Pass precheck and verify functionality
d. Work with dec24-12 to integrate our design into their chip

3. Project Design
a. High level chip design

i. Basic overview
ii. Determine how RISC-V core will interface with memory

1. Design cache system to interface with off chip memory
iii. CyGRA integration
iv. Interface with management area

b. RISC-V core
i. Determine available open IP designs

ii. Choose best open IP for our project
iii. Test harden the softcore to ensure compatibility

c. Accelerator design (CyGRA)
i. Determine acceleration use case

ii. Design and verify hard coded accelerator
iii. Backport work on hard coded accelerator to CGRA

d. RISC-V ISA extension
i. Add basic instruction for testing

ii. Integrate CyGRA into a custom instruction
e. PICO test plan

i. Create toolflow for testing
1. Behavorial
2. C code

ii. FPGA testing flow
f. Management area interface

i. Determine how interrupts are supplied to processor
ii. Determine how management area will interface with on chip memory

sdmay25-28 | 13

4. Integration
a. Combine memory with RISC-V core
b. Connect CyGRA to RISC-V core
c. Test off chip memory
d. Integrate wishbone with management core

5. Testing/Verification
a. Ensure full functionality of RISC-V core
b. Ensure implemented instruction works as expected
c. Ensure memory interface is working correctly

6. Documentation
a. Design documentation
b. Design presentation
c. Website design
d. Bring up planning

Project Proposed Milestones, Metrics, and Evaluation Criteria

Our project's milestones are closely related to the main task sections listed above. Each of
the milestones will be measured using the following metrics:

• Milestone 1: Complete tooling setup
o Each member of the team is able to fully harden a design and complete GL

simulation on an example project.
o Each member can create a Verilog module and complete the steps above
o Each member is aware of how to use the virtual machines to harden a design

• Milestone 2: Small chip design
o Using a previously designed datapath from a CPRE class, harden and verify

the design
o Work with dec24-12 team to integrate our simple design into their framework

• Milestone 3: High level design and RISC-V core
o Determine which RISC-V softcore best fits our use case
o Ensure the chosen RISC-V core works in the Efabless tooling
o Design high level of chip with included RISC-V core

• Milestone 4: Accelerator/CyGRA design
o Determine the specific application to accelerate
o Develop simple Verilog module to accelerate use case
o Backport work to a CGRA design

• Milestone 5: System Integration
o Combine the CyGRA and the RISC-V core

sdmay25-28 | 14

o Include on chip memory
o Wishbone bus integration to management core

• Milestone 6: Overall Design Testing
o Ensure the RISC-V core can interface with both on and off chip memory
o Ensure the management core can write to the memory and reset the RISC-V

core
o Ensure the custom instruction for the CyGRA works as intended

• Milestone 7: Submit Design to Efabless
o Place project in public efabless repository
o Finish all hardened and precheck and submit to efabless by April Deadline

• Milestone 8: Complete Documentation
o Complete all project documentation ensuring readability
o Finish any bring up documentation for the chip

Project Timeline/Schedule

Our project is broken up into 6 major parts; Project prep and setup, November chip deadline,
Project design, Integration, Testing, and Documentation. One of the first deadlines is the
November chip deadline (Figure 1). This included a full test of our team's knowledge of the
efabless tooling as well as our ability to work with another design team to integrate our design
into their multi-design framework.

Figure 2: Project Prep and November Chip

Our next deadline is focused on the full design and submission to efabless. This must be
completed before April 11th, 2025, to ensure that we have time to fix any issues as they
arise.

sdmay25-28 | 15

Figure 3: Project Design

As we progress through the project, more items will be filled out and deadlines set as
needed. Our gantt chart is mostly focused on the immediate future with less detailed
objectives filling out the rest to give a rough outline of what still needs to be completed as
seen in figure 2 and figure 3.

Figure 4: Documentation

Figure 4 represents some of the future objectives that will need to be completed. They are
left dateless since they require previous objectives to be completed first.

sdmay25-28 | 16

Figure 5: Integration, Testing/Verification, and Documentation

Risks and Risk Management/Mitigation
Due to our open-ended project, there are a few risks that are quite different from other
groups.

One major risk that we may face is a project that is unfeasible due to the amount of time.
We are highly unlikely to run into this problem due to our guidance from Dr. Duwe, as he
has given us advice about how to plan our work and when we propose something too
difficult, we are advised to propose something more feasible. Though it is unlikely that we
will run into this problem, if we were to run into this very late into our project, it would
result in major consequences such as our project not having a complete design. To
mitigate this risk, we have come up with a way to fall back on if we were to run into this
problem.

Another major risk that we could face is time delays, due to us not being too familiar with
Efabless or caravel before this project, there is a high chance that we will be set back with
problems that were not expected. Though it would not result in major consequences, if we
are consistently setback major problems could result later down the line which we would
like to avoid. To mitigate the risk of it having a major impact on our project, we have

sdmay25-28 | 17

planned to use an agile management style which would help us address these issues more
effectively. Another way to mitigate the risk would be just making sure that we have clear
communication within our group to make sure that we are moving at a good pace and not
stuck somewhere for a long time.

Personnel Effort Requirements
Our list of tasks is a constantly developing and evolving entity that we cannot put expected
work hours towards each task, especially since said numbers can be skewed by factors
such as the number of sessions and length of said sessions that have varying levels of
efficiency, instead we have a listed number of workdays and/or story points as found in the
AGILE workflow.

Task Projected Hours

Workflow Tools/Setup 40 Hours

November Chip Design 20 Hours

Project Design 100 Hours

Integration 60 Hours

Testing/Verification 40 Hours

Documentation 40 Hours

Table 1: Projected Hours

Other Resource Requirements
Tools and environments to work in that are beneficial to larger team productivity are
immensely advantageous in this project, as our team has gotten in contact with ETG and
currently created 1 VM (soon to be 2) that we can work collaboratively on remotely where
our environment has identical variables and promotes easy sharing of data.

sdmay25-28 | 18

Design

Design Context

Broader Context

When we were designing and planning our project, we thought about accessibility to a
niche subject that is filled with proprietary technology/IP as such we decided to use only
Open-Source tools, so our final deliverable contributes as an educational piece that can
help others break into hardware design.

List relevant considerations related to our project in each of the following areas:

Area Description Example
Public Health, safety, and
welfare

How does your project
affect the general
well-being of various
stakeholder groups?
These groups may be direct
users or may be
indirectly affected (e.g., the
solution is
implemented in their
communities)

Our product gives students
hands-on experience with a
real processor fabricated
on an IC rather than
software simulations and
FPGAs. The programmable
aspect of the project can
help students test designs
and learn Hardware design.

Global, cultural, and social How well does your project
reflect the
values, practices, and aims
of the cultural
groups it affects? Groups
may include but
are not limited to specific
communities,
nations, professions,
workplaces, and
ethnic cultures.

Our project adds to the list
of open-source designs that
the global electrical and
computer engineering
community can use and
expand upon.

Environment What environmental impact
might your
project have? This can
include indirect
effects, such as
deforestation or

Custom instruction can
make some processes take
less instructions and less
energy, which can add up
when done many times.

sdmay25-28 | 19

unsustainable practices
related to
materials manufacture or
procurement.

Economic What economic impact
might your
project have? This can
include the
financial viability of your
product within
your team or company, cost
to
consumers, or broader
economic effects
on communities, markets,
nations, and
other groups.

Our product is open source
which lets anyone use it.
This saves people from
having to develop a design
of their own, which saves
them money.

Table 2: Broader Context

Prior Work/Solutions

Nios® V/g General purpose Processor from Intel

• Processor Overview:
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-
3/processor-87132.html

o 32-bit RISC-V processor
o FPGA implementation of processor
o Come with Quartus® Prime Pro Edition

• Custom Instruction Overview:
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/p
rocessor-custom-instruction-overview.html

o Processors support non-branching custom instructions
o Selected by a mux choosing between the ALU and Custom Instruction Unit

during the execution state of the pipeline.
• Benefits and Drawback compared to our design

o Benefits:
▪ Supports 32 Custom Logic Blocks
▪ Has an Integer Multiplication and Division Unit
▪ Has a floating-point unit
▪ Pipelined
▪ Faster frequency max on popular FPGAs

https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-87132.html
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-87132.html
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/processor-custom-instruction-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/processor-custom-instruction-overview.html

sdmay25-28 | 20

o Drawbacks:
▪ FPGA based

• Require user to have an FPGA
• Larger Area

▪ Can not fabricate as an IC
▪ Cannot re-program custom instruction during run time
▪ Not free (requires Quartus® Prime Pro Edition)

Arm Custom Instructions

• Paper: https://armkeil.blob.core.windows.net/developer/Files/pdf/white-
paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf

o Available with Cortex –M33, Cortex-M55, and Cortex-M85
o Arm Architecture
o Programable Instruction
o Used in the Execution stage of the pipeline

• Benefits and drawbacks compared to our solution
o Benefits

▪ Available on Arm processors
• More features
• Faster

▪ Custom Instruction solution more intricate
• Can pipeline custom instruction

o Drawbacks
▪ Neither Arm nor Arm Custom Instructions is open source
▪ Complicated to use

Sources with citations:

[1] “4. Nios® V/g Processor,” Intel, 2024.
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-
87132.html (accessed Dec. 08, 2024).

[2] “1. Nios® V Processor Custom Instruction Overview,” Intel, 2023.
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/process
or-custom-instruction-overview.html (accessed Dec. 08, 2024).

[3] J. Yiu, “Innovate by Customized Instructions, but Without Fragmenting the
Ecosystem,” 2021. Accessed: Dec. 08, 2024. [Online]. Available:

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf

sdmay25-28 | 21

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-
instructions-without-fragmentation-whitepaper.pdf

Technical Complexity

Our project has multiple complex components that need to work together. Finishing the
project will require the following tasks.

• Creating a Wishbone Slave interface to communicate write data to the User Project
Area.

• Creating a CGRA that can be reconfigured and used to implement custom
instructions.

• Creating a memory interface that can manage memory between a cache and
external memory.

• Creating an SPI Main interface that can communicate with external memory.
• Integrating all components into a final design and having everything work with the

PicoRV32 to allow users to create custom instructions and run programs.

Design Exploration

Design Decisions

For our project, we needed to make several design decisions listed below.

• Which processor ISA will we use
 The ISA determines what instructions our processor will support and how

those instructions are formatted in memory. The ISA could affect how we
can program and call a custom instruction.

• Which open-source implementation of the ISA will we use
 For this project, we will be using an open-source implementation of an ISA to

focus on implementing the custom instruction rather than the design. We
want to choose a processor design that allows the easy implementation of
custom units within the processor. We also need to consider the size the
processor will take, the speed at which it can execute instructions, and how
memory is read.

• What design will we use to implement our custom instruction
 We need to decide on a digital circuit that can have instructions

programmed into it. The circuit needs to be small, fast, and flexible to ensure
the unit functions as expected.

One important consideration that we had to keep in mind when making these above
decisions was our initial constraints through Efabless. Each of the selections in these

sdmay25-28 | 22

categories must be compatible with each other and supported through Efabless, this was
the primary reason we weren’t considering the MIPS ISA (even though that’s what we have
the most experience with through ISU), even though in the end we would’ve likely chosen
the RISC-V ISA from its broader support in industry.

Ideation

When looking for an open-source processor design, we had some suggestions from our
advisor and found options online. Below are the designs we found and considered.

• Rocket Chip
 RISC-V 64 bit
 Feature Rich
 Not optimized for size
 Written in Chisel

• Neorv32
 RISC-V 32 bit
 Designed as a Microcontroller
 Not optimized for size
 Written in VHDL

• Vex RISC-V
 RISC-V 32 bit
 High customizability
 Not optimized for size
 Written in SpinalHDL

• CVA6
 RISC-V 64 bit
 Support UNIX-like operating systems
 Not optimized for size
 Written in System Verilog

• PicoRV32
 RISC-V 32 bit
 Wishbone interface
 High clock frequency
 Size optimized
 Written in Verilog

Decision-Making and Trade-Off

When deciding between the different RISC-V soft-core designs we came up with a few
criteria to rank the various designs we found. The criteria are as follows:

• Instruction Set

sdmay25-28 | 23

 This criterion was used to separate the processors based on which
instruction architecture they supported, either 32 or 64 bit

 It was also further used to specify and determine what processor supported
the most of a given instruction set, i.e. RV32I vs RV32IM

• Written Language
 This criterion was used as for the Efabless process, we needed to submit our

design/create our design in Verilog
• Features

 This criterion was used to specify what type of extra features each processor
included in its base package. Things like the ability to run Linux or if it
contained a wishbone interface were added here

• Size Optimization
 This criterion was based on if the GitHub repository for each processor

specifically mentioned its size/space optimization. This was important since
the user area on the Efabless caravel is limited to 2.92 mm x 3.52mm
(10mm^2), and we require space not only for the base design of the CPU but
also for our additional accelerator.

Based on the criteria listed above and considering the features listed in the previous
section. We chose PicoRV32 because it is written in Verilog (avoiding having to generate
Verilog from something else, but simply doing it directly), contains a wishbone interface,
and is optimized to be smaller. The size of our implementation is a major concern as the
smaller our base design is, the more room is left for our accelerator and adding additional
things like on-chip memory.

sdmay25-28 | 24

Proposed Design

Overview

Our high-level design integrated into the Caravel harness is shown below in figure 3.

Figure 6: High-Level Design

The high-level design consists of two main areas, the Management Area, which is included with the
Caravel harness, and the User Area, where our modules will be placed. The User and Management
area communicate through the following buses, Wishbone, which provides clock, reset, and buses
from communicating between the User and Management Area, Logic Analyzers, which allows us to
probe certain parts of the project for testing, and Interrupt signals, which allows the User Project
area to run code on the VexRISCV when needed. The Management Area has flash inputs, which
allows programs to be loaded onto the VexRISCV. The Management and User Areas also share 34
GPIO ports, which can be set to either an input or outputsdepending on what is needed.

sdmay25-28 | 25

Detailed Design and Visuals

PicoRV32

The PicoRV32 is a size optimized RISC-V 32-bit processor that we chose for our project.
The PicoRV32 is not pipelined, meaning the processor can only run one stage at a time. A
simplified datapath of the PicoRV32 with a CGRA is shown below in figure 4.

Figure 7: PicoRV32 Datapath

The PicoRV32 can run all standard 32-bit RISC V instructions but also supports custom
instruction through a co-processor interface which activates when an unknown instruction is
decoded. This is where are programmable unit will interface with and be used to execute a
custom instruction. Below describes the dataflow of the PicoRV32 with a CGRA.

The first stage of the processor is the Fetch stage which does three things.

1. Fetches the next instruction from memory.

2. Decodes the fetched memory and sets control signals.

3. Write back the result of the previous instruction to the register file if needed.

The next stage of the processor reads from the register file and can go to one of five stages.

1. Memory Read: if the decoded instruction reads from memory.

2. Memory Write: if the decoded instruction writes to memory.

3. Shift: if the decoded instruction is a shift instruction.

sdmay25-28 | 26

4. Execute: if the instruction is not a Memory Read, Memory Write, or Shift.

5. CGRA: if the instruction is a custom instruction.

Once the previous stage finishes, each stage will go to the Fetch Stage. The Memory Read, Write,
Shift, and Execute stages directly go to the Fetch stage. But the CGRA stage goes to the Decode
Stage, then to the Fetch stage. Below is a chart showing the CPI for non-custom instruction
provided by the PicoRV32 readme and their runtimes based at 40 MHz (clock speed provided by
Caravel).

Instruction Jump and
link

ALU reg +
Immediate

ALU reg +
reg

Branch
(not taken)

Memory
load

Memory
store

Branch
(taken)

Indirect
jump

Shift
operations

CPI 3 3 3 3 5 5 5 6 4-15
Runtime 75 ns 75 ns 75 ns 75 ns 125 ns 125 ns 125 ns 150 ns 100ns-

375 ns
Note: The memory figures are assuming single cycle read/write memory which is unrealistic for
our project. A cache hit may produce a CPI and runtime like above, but a cache hit would result in
a high CPI and slow runtime due to SPI being only able to transfer one bit at a time.

We are aiming for the custom instruction to take 3-30 CPI depending on the instruction, meaning
that the runtime would range from 75 ns to 750 ns.

The PicoRV32 will write and read memory to the Memory Interface, which is described later in
this section. The PicoRV32 will also signal interruptions when certain actions need to be taken by
the VexRISCV.

CyGRA

Below is a basic outline of the currently planned CyGRA design. We will have an instruction
parse unit for basic decoding of whether it receives a configuration instruction or an
operation instruction.

- Configuration instruction will set the configuration registers which are the select bits for
the mux input, as well as what operation the ALU executes

sdmay25-28 | 27

- Operation instruction will simply pass the register data to every input, and set interface
validity once the instruction is done.

Currently we plan to support signed and unsigned addition and multiplication operations
for fixed point and integer data types.

Figure 8: CyGRA Design

On-Chip Memory

For On-Chip Memory we are using a pre-hardened open-source 512x32 bit DFFRAM
provided by OL-DFFRAM. The DFFRAM is shown below in figure 6.

sdmay25-28 | 28

Figure 9: On-Chip Memory

The On-Chip memory is a single cycle read/write and is designed to function at 40 MHz. We
may use several of these depending on how much space we have after we implement the
rest of our modules. The On-Chip memory serves as cache memory for the PicoRV32.

For on-chip memory, we have also been looking into other memory solutions. The main
one we have been looking at is OpenRAM, which can generate memory with parameters
entered by the user. The memory OpenRAM generates is SRAM, which is smaller than
DFFRAM, so we could fit more of it on our project.

Other Components

sdmay25-28 | 29

Off-Chip memory: Off chip SPI memory that communicates with SPI Main
component described below. It has a much larger capacity than the on-chip memory but
much slower read and write times.

SPI Main: Used to send and receive data with off-chip memory. Will consist of shift
registers that send data bit by bit to the off-chip memory.

Interrupt module: Processes interrupt requests from the User Project Area and
interprets them for the VexRISCV processor.

Memory Interface: Used as memory I/O and functions as a cache controller. It will
detect when there is a cache hit and miss and will be responsible for loading off-chip
memory to on-chip memory when caching.

Wishbone Slave: Used by the Management Area to write instruction memory to the
Memory Interface. This memory is used to execute instructions on the PicoRV32.

Functionality

The user will load instruction memory into the VexRISCV through the flash ports of the Caravel
harness. This instruction memory will be written to the Memory Interface through the Wishbone
Slave. While the instruction memory is being written to, the PicoRV32 will be executing noop
instruction. After writing memory, the PicoRV32’s program counter will reset, and it will begin
executing the written instructions.

To program the CyGRA, there will be custom instruction(s) that the user will use to write to the
CyGRA’s configuration registers. To execute a programmed custom instruction the user will call
another instruction. These instructions will be abstracted into a C library for easy use.

Areas of Concern and Development

Our current design satisfies all specifications as laid out by our client Dr Duwe. The design
implements an RISC-V soft-core that will allow both inexperienced and newer members to
learn about how the Efabless caravel and supporting board works as well as allow more
experienced members to learn about application acceleration with the inclusion of the
custom accelerator unit.

The primary concern for our design is full functionality and completion before the April
Efabless date. Beyond that, there is some concern with the CyGRA unit because it has not
been implemented in Verilog and tested for functionality and size.

sdmay25-28 | 30

We will address this by working as quickly as possible to get a working prototype to
perform RTL tests on. Doing this, we can debug issues quickly and see where our design
may need to be modified. We will also quickly create and test individual components, so
they are ready to be integrated into our design when needed. Ideally, we want all our
modules coded and tested by March of next year so we can make changes if needed.

Technology Considerations

The Efabless design process requires the use of certain open-source tools. The primary
tool we use is OpenLane, which is used to harden designs. These tools are well-
documented but not user-friendly. This can make working with the tools difficult at times.
However, Efabless has scripts and make files that do most of the work, which helps
working with the tools.

Design Analysis

Currently, we have a high-level design planned out varying progress on all the modules for
the high-level design. We have a completed RISC-V processor that needs to be tested in
Caravel and in-chip memory selected. We have a high-level design for the CyGRA that
needs to be implemented in Verilog and tested. The rest of our modules have been decided
on recently and need more time to be designed, implemented, and tested. So far there has
been no indication that our project will be impossible to finish before the April deadline for
submitting our design.

Testing

Unit Testing
All the modules in our design will have at least one test that ensures the correct

behavior of each of our components. These tests will be written as Verilog testbenches.
We will test each component as they are implemented. The test will then be conducted
using OpenLane tools.

Interface Testing
There are a few interfaces that we will be testing, this testing will make sure that the

communication between the user area and the management area is correct. These tests
ensure that we are correctly communicating over a given protocol.

Interfaces to test:

sdmay25-28 | 31

• Wishbone Slave
• Memory Interface

o If implementing Off-Chip Memory
▪ Cache Controller
▪ SPI

Integration Testing
These tests will be written both as Verilog testbenches as well as C code. These

tests will make sure that our components work as desired when they are connected. The
integration test will also make sure that the RISC-V Instructions continue to work as
expected. The PicoRV32 core comes with pre-existing testbenches that verifies that the
RISC-V instructions are working as expected; we plan on making use of these testbenches
to save time.

System Testing
The C code will enable us to program the Management Area, ensuring that user project

can properly interface with the various chip utilities. It is critical that we properly test the
communication between the Management Area and User Area because it is what will be used
during the chip bring-up.

Regression Testing
Our integration testing will make sure that changes to our project do not change the

desired behavior. Along with continually using our integration tests, we will make sure that the
individual components are tested. We will retest our components whenever any changes are
made. If there is a change in the desired behavior, we will make sure that it is known, and we will
update the test.

Acceptance Testing
Our acceptance testing will ensure that we are meeting the desired metrics that we

mentioned earlier. Meeting these metrics are important to make sure that the CyGRA is having
the expected impact. We will harden our design and then ensure that the user area passed
precheck to confirm that the layout matches the Verilog design. Efabless precheck will run DRC
and LVS tests to make sure that there will be no issues during fabrication.

Results
 The results from our tests will be in the form of waveforms, these results will be
used to make sure that we are meeting our metrics. The waveforms will be used to perform

sdmay25-28 | 32

regression testing to ensure that changes to our project do not have an impact on the
output.

Implementation
So far, we have been able to run a pre-defined custom instruction on the PicoRV32 when
simulating. Below is a simulation of an R-type instruction named ada, which performs
unsigned addition of all bytes in a word. Figure 7 below shows the waveform of ada with
RS1 set as 0x0101000 and RS2 set as 0x0000000.

Figure 10: ada Waveform

With RS1 value of 0x0101000 being inputted into the ada module, we get the value 2 as output

which we expect.

We have also been able to get basic C code running on the PicoRV32. Figure 8 below shows the

PicoRV32 assigning the value 0xDEAFBEEF to address 1020 of memory.

sdmay25-28 | 33

Figure 11: PicoRV32 Running Code

We can see that DEADBEEF gets assigned to address 255, which is byte 1020 of memory which

is what we expect.

We also have been able pass a design with the PicoRV32 and in-chip memory through pre-

check, which means it has passed DRC, LVS, and STA tests and could be fabricated. The

wrapper with both modules is shown below in figure 8.

Figure 12: Hardened Wrapper with PicoRV32 and DFFRAM

The smaller green square at the bottom left is the PicoRV32 which is .6mm x .6mm and to the right
of that is the 512x32 bit DFFRAM which is about 1mm x 1 mm.

sdmay25-28 | 34

Professional Responsibility
Areas of Professional Responsibility/Codes of Ethics

Area of
Responsibility

Definition Corresponding IEEE
Ethics Code

Team interaction

Work
Competence

Our definition of work
competence is making
sure that we are
working to the best of
our abilities and that we
are being honest with
each other if we are not
completely confident in
our abilities to perform
a task.

6. to maintain and
improve our technical
competence and to
undertake technological
tasks for others only if
qualified by training or
experience or after full
disclosure of pertinent
limitations

Our team ensured that
we carried out each
task to the best of our
ability given time
constraints and tried
not to promise
anything we couldn’t
deliver and addressed
limitations

Financial
Responsibility

Our definition of
financial responsibility
is making sure that we
are not misusing funds
for our project and
making sure that we are
making it properly open
source so that others
can learn from our work

4. To reject bribery in all
its forms

Our team ensured that
our project was
completely open
source and at the
minimum cost to
anyone wanting to
replicate our work and
were transparent with
our client and
stakeholders on the
cost of production or
desired components

Communication
Honesty

Our definition of
communication
honesty is making sure
that we are being
honest with how and
what our project can
perform as well as
being honest with our
team members and our
client/advisor

3. To be honest and
realistic in stating claims
or estimates based on
available data

We maintained clear
and honest
communication with
all stakeholders
ensuring our technical
reports and progress
were reported
accurately

sdmay25-28 | 35

Health, Safety,
Well-being

Our definition of health,
safety, and well-being is
making sure that we are
making a project that
will improve people’s
lives through learning
and not negatively
affect others

1. to hold paramount the
safety, health, and
welfare of the public, to
strive to comply with
ethical design and
sustainable development
practices, to protect the
privacy of others, and to
disclose promptly factors
that might endanger the
public or the environment

Our team focused on
the technical
development of our
project and disclosed
any information that
could be problematic
in a digital
environment and were
conscious in the cost
and use of resources

Property
Ownership

Our definition of
property ownership is
making sure that our
project is properly being
used and that we are
properly handing our
project over once we
finish it

9. To avoid injuring others,
their property, reputation,
or employment by false or
malicious action

Our team has focused
on ensuring that our
project and deliverable
will persist long after
the end of this project
to serve as an
available educational
tool for future students

Sustainability Our definition of
sustainability is making
sure that we are not
misusing funds or
negatively affecting the
environment more than
needed (due to the
fabrication process)

1. To accept responsibility
in making decisions
consistent with the safety,
health, and welfare of the
public, and to disclose
promptly factors that
might endanger the public
or the environment

Our team focused on
ensuring that our
project is sustainable
by making it open
source as well as by
making this a resource
for students to use for
years to come

Social
Responsibility

Our definition of
sustainability is making
sure that our project is
used to help others and
that everyone will be
able to use our project
no matter age, race,
gender, etc.

2. to improve the
understanding by
individuals and society of
the capabilities and societal
implications of conventional
and emerging technologies,
including intelligent
systems;

We have as a team
troubleshooted at
every turn in our
project and done
research to make each
component open
source and picked IP
that is projected to be
supported well into the
future

sdmay25-28 | 36

One area of responsibility we are doing well in is communication. We keep constant
contact with each other and exchange information and progress frequently.
Communication is the bedrock of a good team and is indicative of strong performance
because efficient communication leads to good task delegation and progress.

One area of responsibility we could improve is social responsibility. Currently our project is
very technical and difficult to learn from, this could be unfair to those with less resources
and less experience. To address this, we can make sure our project has documentation
that properly explains the technologies that are being used and provides resources for
them to use.

Four Principles

Figure 13: Four Principles Table

One important broad context-principal pair for our project is Economic – Beneficence. We all want
to contribute something to the knowledge of Computer Engineering and to contribute and support
the open-source community, and our project is a good way to do both. We will ensure that our
project remains open source to anyone that wishes to use it.

One broad context-principal pair that our project will be lacking in is environment and
Nonmaleficence. We cannot ensure that our project isn’t wasteful, someone could
theoretically use the CyGRA is a way that is inefficient and therefore wasteful of power.
However, we do think that the potential power that can be saved by an efficiently used
CyGRA will outweigh the negatives for inefficient use.

sdmay25-28 | 37

Virtues
Our team believes that the three most important virtues are Integrity, Communication, and
Respect. Integrity to us means to upload honesty for the team no matter what as well as be
transparent with both each other and our advisor and client to build trust and respect.
Communication helps us ensure we are always in talks with each other about the project
and where we are so everyone can get a good sense of progress. Respect means for us to
be kind and understanding of others in the event of difficulties or other reasons and to
always be understanding.

Camden:

Virtue Demonstrated -– Communication

To support communication and trust I keep in contact with the team and lead team
meetings to help foster a successful and friendly environment for the whole team, so
everyone feels safe to talk about whatever they need, good or bad.

Virtue Undemonstrated -– Self-discipline

One of the things I have struggled with both in this project and in life is self-
discipline. Overall, I don't feel as if I have put in as much time as I have both wanted to and
should, leaving my teammates on the hook for a bit more work than I would prefer. I want
to be the best teammate I can and hope to improve on this next semester.

John:

 Virtue Demonstrated – Honesty

One virtue that I have demonstrated is honesty. I have been honest with my team
members; I believe that this is important because it shows that I am respectful to those on
my team. I also want my team to see me as trustworthy and that I do what I say. I have
shown this virtue through our meetings where I am honest with what I have completed and
the reasonings for not completing something. I am also honest when I do not completely
understand something, this makes sure that I am understanding and not just pretending.

 Virtue Undemonstrated – Self-discipline

One virtue that I have not demonstrated is self-discipline, at least not enough of it. I
have not been putting enough time into working on senior design as I would like. I do think I
have been slacking a bit on my contributions and feel like it is disrespectful to my team not
to do more. I will make sure that I not only contribute more time to senior design, but also

sdmay25-28 | 38

that I work earlier in order to be able to contribute more and to give us more time to fix
issues.

Nicholas:

Virtue Demonstrated – Diligence

One virtue that I have demonstrated is diligence. If I have a task I need to do, I will
always strive to work hard towards completing that task. Through the beginning of the
project, I spent most of most time out of everyone learning the Efabless tools and spending
long periods of time trying to resolve issues I had while learning so I could help my
teammates with it in the future. I was able to complete a full project by the beginning of
November, which helped give me a good knowledge of Caravel and OpenLANE before
anyone else in my group.

Virtue Undemonstrated – Being Collaborative

One virtue that I have not demonstrated is being collaborative. Out of everyone in
the group, I spent most of my time alone doing my own thing, which had some benefits but
is outweighed by not having any else able to work on your tasks. I hope to fix this by
communicating my progress and teaching my other group members more about my work
so they can help me complete tasks in the future.

Calvin:

Virtue Demonstrated – Humility

Throughout the beginning of the design process, we have run into many difficulties
when it has come to making decisions about the scope of our project and the design itself.
As a rule, I tend to have my head in the clouds in relation to ideas, and I tend to be very
stubborn about changes that others suggest for these ideas. Because I find myself lacking
in this area, humility is very important for me to be able to work in a team and client driven
environment. Throughout this first semester I have made an active effort to maintain
humility regarding making decisions as a team, as well as readily accepting feedback from
our advisor and client as to our direction

Virtue Undemonstrated – Clarity

When you are designing a product that other people in the future will learn from, or
that they might find use in, you have to keep in mind the ease of use from their perspective.
Your code cannot be inscrutable if you want others to find value in it. So far, I have been lax
on demonstrating clarity due to all the code I’m writing being test code, but going forward

sdmay25-28 | 39

into the next semester, I hope to make an active effort toward all production code being
well organized and readable, with clear documentation and comments.

Levi:

Virtue Demonstrated – Adaptability

As our project has progressed our project has changed and adapted and the
perceived skillsets and assumed roles of some people in our group have changed. For
myself I started off as a client interaction lead, then a integration lead, and now that role is
refined more to a SPI/Serial Communications lead (WISHBONE & SPI) and maintain our
website. I think I have managed well with picking up different hats and not dying on a hill of
needing to play a specific part. I originally wanted to be the Caravel lead but after that role
was already taken, I found a new role that still lets me interact with caravel in ways I want
to, but contributing something else the team will value more.

Virtue Undemonstrated - Self-discipline

One virtue I haven’t displayed well this semester is self-discipline. This semester
has been the busiest semester I’ve had in college, and the group I am working with for the
project is extremely competent and capable. It has been easy during this project to after a
long week of school, to not focus on senior design for the weekend because I know it will
all be fine. I think I could take more initiative in the next semester and use more of my free
time to work on this project to help my teammates and let them know how much I value
them and give them time to slack off in turn.

Closing Material

Conclusion
For our project, we have put in a lot of work learning the Efabless tools, planning, and
design. So far, we have made good progress in achieving our goals for the project. We have
gotten a design through the Efabless process. We also have a RISC-V processor picked out
and we are able to execute a pre-defined custom instruction on it using a co-processor
interface. This is a large part of our project; it makes good progress in achieving our goals.
Now we need to implement a user-defined instruction unit and include everything in a top-
level Caravel wrapper.

Our main objectives for the spring are to complete and test all our modules, integrate
these modules into a top-level design, test the top-level design, and send our project to be

sdmay25-28 | 40

fabricated. We feel we are on pace to get our project done by the April submission
deadline.

References
CGRA Architecture and Tools | AHA Agile Hardware Project.
https://aha.stanford.edu/research/cgra-architecture-and-tools. Accessed October 11,
2024.

Efabless Caravel “Harness” SoC — Caravel Harness Documentation. https://caravel-
harness.readthedocs.io/en/latest/. Accessed September 20, 2024.

“PicoRV32 - A Size-Optimized RISC-V CPU.” GitHub,
https://github.com/YosysHQ/picorv32. Accessed October 30, 2024.

Todd, Dillon. “Tightly Coupling the PicoRV32 RISC-V Processor with Custom Logic
Accelerators via a Generic Interface.” All Theses, May 2021,
https://open.clemson.edu/all_theses/3552. Accessed November 15, 2024.

Appendices

Criteria
Rocket Chip PicoRV32

(Chosen)

Neorv32 VexRiscV CVA6

Instruction
Set

RV64I +
IMAFDC

RV32I + MC RV32I +
Zicsr

Zifencei

RV32I + M RV64I + MAC

Written
Language

Chisel Verilog VHDL SpinalHDL
(Scala)

SystemVerilog

Features

Everything
+ ROCC

-Multiplication

-Wishbone
Master
interface

-Compressed
Instructions

-Axi interface

-CSR
instructions

-Instruction-
fetch fence

-Multiplication

-Wishbone
ready

-Linux

-Privilege
levels

-

sdmay25-28 | 41

-PCPI
interface

Size
optimization

No Yes No No No

Table 3: RISC-V Core Decision Matrix

DFFRAM GitHub repository: https://github.com/efabless/OL-DFFRAM

Team

Team Members
1. Camden Fergen
2. John Huaracha
3. Nicholas Lynch
4. Calvin Smith
5. Levi Wenck

Required Skills Sets
- Digital VLSI
- Hardware Design
- Teamwork

Skills Set Covered by the Team
- Hardware Design
- Team software development
- Electrical knowledge
- Embedded systems
- Agile
- CI/CD
- Analog and Digital VLSI
- Verilog/VHDL

Project Management Style Adopted by the Team
- Agile

sdmay25-28 | 42

Initial Project Management Roles
• Camden Fergen – DevOps and Project Lead
• John Huaracha – Testing Lead
• Nicholas Lynch – Harden and Verification Lead
• Calvin Smith – Accelerator Design Lead
• Levi Wenck – Communication Interfaces Lead

Team contract
Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings

• Team Meeting: Tuesdays, 5:30pm, Senior Design Lab/TLA
o other meetings are arranged as needed via Discord

• Meeting with Duwe: Friday, 3:00pm, Durham 353

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-
mail, phone, app, face-to-face):

• Discord - Internal
• Email, Teams - External

3. Decision-making policy (e.g., consensus, majority vote):

• Majority vote

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

• Once the team meeting starts, John will keep track of time. We’ll use an excel sheet

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

• Be there at least by 6:00, notify 24 hours in advance if you can’t make it
• Be a team player

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

• Ensure all assigned tasks are completed on time. If you are unable to make a deadline,
let the team know in advance.

• All tasks must be completed in full by the deadline.

sdmay25-28 | 43

3. Expected level of communication with other team members:

• Communicate a lot, there is no such thing as over communicating
• Let people know what you are working on and when you run into problem when

needed/when decisions are made

4. Expected level of commitment to team decisions and tasks:

• We expect everyone to commit to the team and to the project
• Even if a decision is made which you are against, you should be putting in full effort
• Get your tasks done on time and communicate if you won’t be able to

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

• Camden Fergen – DevOps and Project Lead
• John Huaracha – Testing Lead
• Nicholas Lynch – Harden and Verification Lead
• Calvin Smith – Accelerator Design Lead
• Levi Wenck – Communication Interfaces Lead

2. Strategies for supporting and guiding the work of all team members:

• Be a nice person
• Be an understanding person
• Do good work

o Documentation/comments

3. Strategies for recognizing the contributions of all team members:

• Using some sort of project management tool (Jira, Gitlab, etc.)

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

Calvin Smith:

- Hardware Design
- Team software development
- Basic electrical knowledge

sdmay25-28 | 44

- Embedded systems

 Camden Fergen:

- Digital design/VHDL (CPRE 381)
- Software development and low level coding (C, Assembly)
- Embedded system integration
- CI/CD

 Levi Wenck:

- General Software Development skills & CI/CD (AGILE)
- Embedded Systems experience & network analysis (Internships)
- RTL focused CprE Degree

 John Huaracha:

- CI/CD & Agile
- Embedded Systems
- VLSI (EE 330)
- VHDL & Verilog

 Nicholas Lynch:

- Low Level Programming
- Basic Analog and Digital VLSI design
- VHDL & Verilog design

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

- Be open to ideas
o Understand that not everyone knows everything

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)

- Write/document complaint(s) as to help define what the issue is
(Privately/Publicly)

- Request a team meeting
- Communicate the issue with all team members

Goal-Setting, Planning, and Execution

sdmay25-28 | 45

1. Team goals for this semester:

- Have Fun
- Have a prototype finished

2. Strategies for planning and assigning individual and team work:

- Coordinate tasks during team meetings or on discord.

3. Strategies for keeping on task:

- Holding other teammates accountable for their work.
- Setting deadlines for all tasks.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

• Have a team meeting to discuss any issues with everyone present

2. What will your team do if the infractions continue?

• Contact course instructors to find a resolution

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) John Huaracha DATE 09/17/2024

2) Levi Wenck DATE 09/17/2024

3) Nicholas Lynch DATE 09/17/2024

4)Calvin Smith DATE 09/17/2024

5) Camden Fergen DATE 09/18/2024

