

Digital ASIC Design

- Digital ASIC (Application Specific Integrated Circuit)
- Implementing an RISC-V processor on chip
 - o Extending the RISC-V ISA
 - Customizable ALU (Custom Logic Unit (CLU))
 - Designed in Verilog
- Fabricate on silicone using eFabless process

ASIC Prototyping

- How do we prototype?
 - o Choosing our RISC-V processor
 - PICO RV
 - Rocket Chip
 - VexRiscV
 - Deciding on application
 - Application Accelerator
 - Eink Driver
 - High level design
 - How to communicate with the softcore
 - Ram?

Reflection

- How did this improve our project?
 - Iterating on processors was good to learn about the different aspects of RISC-V soft cores
 - Gives us a better understanding of the RISC-V instruction set architecture
 - Learning about different applications let us understand what would work best for a general accelerator
 - Lead us to a Coarse-Grained Reconfigurable Architecture

Next Steps

- Iteration led us to slow down decision process
- Helped us choose better processor to fit our needs
- Next semester
 - Start iterating actual design on the accelerator
 - Continually improve the soft-core <-> caravel implementation

ASIC VERIFICATION SPECTRUM

