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Executive Summary 
There are not many ways for students to experience, learn, and participate in Digital 

ASIC design. Thankfully, due to the introduction of open-source tools and designs such as 
Caravel Harness and OpenLANE, ASIC design is achievable for undergraduate students. 
Our project will be leveraging these tools to make a digital ASIC of our own. We aim to 
create an open-source coarse-grained reconfigurable architecture named the CyGRA, 
attached to an open-source microcontroller. We hope our project can help students learn 
about Computer Hardware and Digital IC design by providing a hands-on digital IC that 
students can experiment with and learn from. We also hope our project can also serve as a 
jumpstart point for new students who may want to try digital IC design. 

To complete our project, we are utilizing the open-source tools and designs from 
Efabless. We are using a CGRA co-processor integrated into a microcontroller to extend an 
open-source ISA. There have been a handful of decisions made for our design: We have 
chosen to use the PicoRV32 as our microcontroller core, DFFRAM for on-chip memory, as 
well as a cache system to extend the memory size and utilize off-chip memory. The goal for 
our CyGRA co-processor is to accelerate certain instructions, as well as allow users to 
define their own configurations to potentially accelerate their own instructions. We also 
have experience with the open-source tooling provided by Efabless, so in the event an 
opportunity arises we can get our chip fabricated.  

 

 

 

 

 

 

 

Update:  As of March 2nd, 2025, Efabless has shutdown. Because of this, we currently do 
not have a plan for getting the chip fabricated. Regarding our senior design project, this has 
little change in terms of our project design, and we will continue to use the Efabless 
tooling, but we no longer have any access to tech support from Efabless in the event we 
run into issues. Additionally, we now no longer need to have the project ready for 
Efabless’s April 21st deadline, which will allow us more time to design and test our system 
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Learning Summary 

Development Standards & Practices Used 

IEEE 1754-1994: IEEE Standard for a 32-bit Microprocessor Architecture 

IEEE 1364-2001: IEEE Standard Verilog Hardware Description Language 

IEEE 1364.1-2002: IEEE Standard for Verilog Register Transfer Level Synthesis 

Summary of Requirements 

• Project must be compatible with the Skywater 130nm process 
• Entire project must be open source 
• Function as a microcontroller when provided with standard instructions 
• Support custom instructions defined by the user 
• Stores and runs programs provided by the user 
• HDL used is Verilog 

Applicable Courses from Iowa State University Curriculum 

• CPRE 2810 — Digital Logic 
• CPRE 2880 — Embedded Systems 
• CPRE 3810 — Computer Organization and Assembly Level Programming 
• CPRE 4870 — Hardware Design for Machine Learning  
• CPRE 4880 — Embedded Systems Design 
• EE/CPRE 3300 — Integrated Electronics 
• EE/CPRE 4650 — Digital VLSI Design 

New Skills/Knowledge acquired that was not taught in courses 

Skills: 

• ASIC Chip Design 
• Chip Fabrication 
• Memory system 
• Reconfigurable architecture 
• Using open-source tools 

Tools: 

• Caravel Harness 
• CocoTB 
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• Magic DRC 
• Netgen LVS 
• OpenLANE/OpenROAD 
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List of Symbols and Definitions 
Efabless – Currently shutdown open-source fabrication company. Has provided many 
open-source tooling as well as the Caravel Harness 

Caravel Harness - Provided wrapper around our design which includes an SoC 

SoC - System on chip 

ASIC - Application-Specific Integrated Circuit 

RISC-V – Open-source ISA  

PicoRV32 - A Size-Optimized RISC-V CPU 

Chip Forge – ISU Club focused on developing and bringing up ASICs, who have also 
created a tool for testing caravel projects on an Xilinx Artix FPGA  

CGRA – Coarse-Grained Reconfigurable Architecture, a reconfigurable architecture that 
operates on coarser granularity than traditional reconfigurable architectures such as FPGA 

FPGA - Field Programmable Gate Array, reconfigurable integrated circuit 

SPI - Serial Peripheral Interface 

PCB - Printed Circuit Board 

Verilog HDL - Verilog Hardware Description Language 

SkyWater 130nm - Fabrication process used by Efabless 

User Area - Our design space within the Caravel Harness 

Management Area - Part of the Caravel Harness that includes management utilities, SoC, 
and logic analyzer probes 

OpenLane - The collection of open-sourced tools provided by Efabless 

Embench-iot – The collection of open-sourced benchmarks based on Bristol/Embecosm 
Embedded Benchmark Suite for modern embedded systems. 
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Introduction 

Problem Statement 

Processors are constrained by their defined instruction sets. If an operation isn't 
supported, designers face three options: redesign and refabricate the processor (which is 
costly and time consuming), approximate the operation using multiple instructions (which 
can be inefficient or inaccurate), or avoid the operation altogether. In many cases, none of 
these options are practical. 

Currently, few research processors are suitable for learning processor design because 
most lack low-level accessibility and are difficult to modify. This forces students and 
educators to rely on alternative methods, which can limit hands-on learning. 

To address this, we aim to design a system-on-chip (SoC) that allows users to define and 
implement custom instructions directly in the processor. Our goal is to make these 
instructions highly customizable, giving users maximum flexibility to tailor processor 
behavior to their needs. Additionally, because our team is interested in reconfigurable 
computing, this project will enable us to explore that field further by designing a dedicated 
reconfigurable computing unit. 

 

Figure 1: Caravel Chip Design 

For our ASIC design, we will use Efabless’s Caravel platform along with the OpenLANE 
tooling. Efabless’s Caravel will act as a harness that we will integrate our project into. This 
provides us with a management area that is powered by a VexRISC-V processor, including 
features such as logic analyzers, interrupt pins, and a wishbone bus including clock and 
reset signals, which we will use to support our design. OpenLANE is a collection of open-
source tooling that we will use to generate the physical layout of our chip from the Verilog 
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code. Additionally, it also runs additional checks such as DRC (Design Rule Check), LVS 
(Layout Versus Schematic), and STA (Static Timing Analysis). 

Intended Users 

Chip Forge Club Member  

Chip Forge is a student organization at Iowa State University dedicated to designing analog 
and digital ASICs. Each member has an interest in designing, testing, and/or fabricating 
ASICs. The club uses Efabless’s Caravel and open-source tooling, so students need 
resources to help learn about it. Our project will provide students with an interactable ASIC 
to learn about the Caravel chip and serve as a potential jumping-off point for their projects. 

Hardware Students  

Hardware students encompass all students learning about digital hardware design in 
classes like CPRE 2810, CPRE 3810, or CPRE/EE 4650. These students need ways to learn 
about reconfigurable ISAs and complete SoCs. The ways students learn about these topics 
is through software and FPGAs. Our project will provide a way for students to learn these 
things on a physical processor, which will aid in the education of many hardware students. 
Our project will also aid future students who use the Efabless process and Caravel chip in 
future senior design projects. 

Professors  

Professors are interested in instructing their students and need new teaching methods. 
Our project provides an interactive way to teach students about open-source ISAs, and 
microprocessors. Our project will expand professors' teaching options and allow them to 
instruct their students more effectively. 

Requirements, Constraints, And Standards  

Requirements & Constraints  

Functional requirements: 

• Function as a microcontroller when provided with normal ISA instructions. 
• Support custom instructions defined by the user. 
• Custom instructions should only be executed when called (should not execute 

custom instructions when provided standard ISA instructions). 
• Stores and runs programs provided by the user. 

Technical requirements:  
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• HDL used is Verilog 
• Custom instruction execution should not slow down the processer. 
• Programming a new instruction should take minimal time. 
• Max clock frequency of 40 MHz (constraint). 
• The microcontroller is programmed using C. 
• Design should pass LVS and DRC test before sending off to be fabricated. 
• The ISA softcore used must be open-source. 
• Chip tapeout in the SkyWater 130 nm process 

User experiential requirements: 

• Product should be user-friendly to program custom instructions and load in 
programs. 

• Product should provide a wide range of settings that cater to different user 
experience levels. 

• It should be easy to test custom instructions and programs. 
• Custom instruction assembly code should be structured and loaded like a standard 

ISA instruction. 

Physical: 

• Must function at room temperature (≈20°C). 
• User project must be 3mm x 3.6mm (10mm2) to fit in the user project area 

(constraint). 
• Must use I/O pins provided by project wrapper (constraint). 

Engineering Standards 
Engineering standards are important to adhere to when designing products. Standards 
ensure that your product is consistent with the industry, allowing easier use for users and 
others in the industry that may work on your product later. For our project, we will be using 
standards laid out by IEEE. 

EEE 1754-1994: IEEE Standard for a 32-bit Microprocessor Architecture 

Since we are designing a 32-bit Microprocessor, it is important for our project to adhere to 
the pre-established standards from IEEE. We be careful to ensure that we adhere to this 
standard when adding our custom function unit. 

IEEE 1364-2001: IEEE Standard Verilog Hardware Description Language 

The Efabless process requires the use of Verilog for our design. Using this, we will ensure 
our Verilog code adheres to the industry standard. 

IEEE 1364.1-2002: IEEE Standard for Verilog Register Transfer Level Synthesis 
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Our project will use RTL synthesis to translate our Verilog code to a hardened design. Using 
this, we can write code that best works with RTL synthesis to ensure correctness and 
efficiency. 

Wishbone Bus 

Our project will use the wishbone protocol as implemented by Efabless to communicate 
between the user area and the management area. Efabless’s process has this protocol 
implemented as a non-option, with a slight variation from the OpenCores wishbone 
protocol. 

SPI Protocol 

The SPI Protocol de facto standard is a serial communication bus that was developed by 
Motorola in the 1980s with a master-slave configuration that is commonly used in SD 
cards, it consists of four logic signals: CS, SCLK, MOSI, MISO. For our project the SPI 
Protocol will be used to communicate between off-chip memory and on-chip memory (the 
slaves) via a memory interface linked to an SPI master. 
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Project Plan 

Project Management/Tracking Procedures 
Our team will be using an agile management style for project planning. This allows our 
team to have structured goals with clear deadlines and milestones to reach, while also 
ensuring our team is provided with the flexibility needed to accommodate any unexpected 
difficulties that may arise during development. 

Our team will track the progress through communication on Microsoft Teams and Discord 
as well as shared files in the SharePoint associated with the Teams. Additionally, we will be 
using GitLab for version control of code base and tracking any specific issues found in the 
code. 

Task Decomposition 
Our project is split up into the following tasks which will be completed in sequential order: 

1. Project Prep 
a. Setup virtual machines to complete design work on 
b. Setup Gitlab repos to hold source code and GitLab modules 
c. Become familiar with the Efabless tools 

i. OpenLane 
ii. Caravel 

d. Successfully harden and verify a test design 
2. November Chip Design 

a. Decide on a design/component to place onto to chip framework 
b. Harden chosen design 
c. Pass precheck and verify functionality 
d. Work with dec24-12 to integrate our design into their chip 

3. Project Design 
a. High level chip design 

i. Basic overview 
ii. Determine how softcore will interface with memory 

1. Design cache system to interface with off chip memory 
iii. CyGRA integration 
iv. Interface with management area 

b. RISC-V core 
i. Determine available open-source IP designs 

ii. Choose the best open-source IP for our project 
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iii. Test hardening the softcore to ensure compatibility 
c. Accelerator design (CyGRA) 

i. Determine acceleration use case 
ii. Design and verify hard coded accelerator 

iii. Backport work on hard coded accelerator to CyGRA 
d. RISC-V ISA extension 

i. Add basic instruction for testing 
ii. Integrate CyGRA into a custom instruction 

e. PicoRV32 test plan 
i. Create toolflow for testing 

1. Behavioral 
2. C code 

ii. FPGA testing flow 
1. Compile embench-iot benchmarks 
2. Run as baseline to compare to CyGRA acceleration 

f. Management area interface 
i. Determine how interrupts are supplied to processor 

ii. Determine how the management area will interface with on chip 
memory 

4. Integration 
a. Combine memory system with softcore 
b. Connect CyGRA to the softcore 
c. Test memory system 
d. Integrate wishbone with management core 

5. Testing/Verification 
a. Ensure full functionality of microcontroller 
b. Ensure implemented instruction works as expected 
c. Ensure memory interface is working correctly 
d. Run FGPA tests of full system and embench-iot benchmarks 

6. Documentation 
a. Design documentation 
b. Design presentation 
c. Website design 
d. Bring up planning 

Project Proposed Milestones, Metrics, and Evaluation Criteria 

Our project's milestones are closely related to the main task sections listed above. Each of 
the milestones will be measured using the following metrics: 
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• Milestone 1: Complete tooling setup 
o Each member of the team is able to fully harden a design and complete GL 

simulation on an example project. 
o Each member can create a Verilog module and complete the steps above 
o Each member is aware of how to use the virtual machines to harden a design 

• Milestone 2: Small chip design 
o Using a previously designed data path from a CPRE class, harden and verify 

the design 
o Work with dec24-12 team to integrate our simple design into their framework 

• Milestone 3: High level design and softcore 
o Determine which open-source ISA softcore best fits our use case 
o Ensure the chosen softcore works in the Efabless tooling 
o Design high level of chip with included softcore 

• Milestone 4: Accelerator/CyGRA design 
o Determine the specific application to accelerate 
o Develop simple Verilog module to accelerate use case 
o Backport work to a CyGRA design 

• Milestone 5: System Integration 
o Combine the CyGRA and the softcore 
o Include on chip memory  
o Wishbone bus integration to management core 

• Milestone 6: Overall Design Testing 
o Ensure the softcore can interface with both on and off chip memory through 

cache system 
o Ensure the management core can write to the memory and reset the softcore 
o Ensure the custom instruction for the CyGRA works as intended 

• Milestone 7: Synthesize Layout 
o Synthesize each component individually 
o Synthesize high level design 
o Perform gate level tests 

• Milestone 8: Complete Documentation 
o Complete all project documentation ensuring readability 
o Finish any bring up documentation for the chip 

Project Timeline/Schedule 

Our project is broken up into 6 major parts: Project prep and setup, November chip 
deadline, Project design, Integration, Testing, and Documentation. One of the first 
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deadlines is the November chip deadline (Figure 2). This included a full test of our team's 
knowledge of the Efabless tooling as well as our ability to work with another design team to 
integrate our design into their multi-design framework. 

 

Figure 2: Project Prep and November Chip 

Our next deadline is focused on the full design and chip tapeout/submission. 

 

Figure 3: Project Design 

Our Gantt chart has been mostly focused on the immediate future with less detailed 
objectives filling out the rest to give a rough outline of what still needs to be completed as 
seen in figure 2 and figure 3. 
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Figure 4: Documentation 

Figure 4 represents some of our documentation objectives that (at the time) were to be 
completed. You can see that they are staggered as each section built upon the last. 

 

Figure 5: Integration, Testing/Verification, and Documentation 

Risks and Risk Management/Mitigation 
Due to our open-ended project, there are a few risks that are quite different from other 
groups.   

One major risk that we face is that our project may become unfeasible due to time 
constraints. However, this risk is fairly minimal due to the guidance that our advisor, Dr. 
Duwe, gives us during our weekly meetings. This ensures that we will end up with a 
complete project by the end of the year. While unlikely, if the feasibility of our project is at 
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risk later in the project, we plan to mitigate this by developing a fallback plan to ensure that 
we can deliver a functional product in the event of major setbacks. 

Another significant risk we face is the potential for time delays, as before this project we 
were not familiar with Efabless’s Caravel or OpenLANE tools. This lack of experience 
increases the likelihood of unexpected challenges that could slow our progress. While 
minor setbacks alone may not have any serious consequences on our timeline, persistent 
delays could lead to larger problems later on. To mitigate this risk, we are adopting an agile 
management approach, allowing us to address issues more effectively as they arise. 
Additionally, we are prioritizing clear and consistent communication within our team to 
ensure we keep steady progress and quickly resolve roadblocks. 

The largest challenge we’ve faced so far is the time required to complete certain 
components, the most notable of which is the CyGRA, which has proven to be much more 
complex than anticipated. Additionally, the SPI master unit took us longer than expected to 
adapt to our project which caused delays in integration and testing. To mitigate this, we 
have split our team into multiple leads so during any delay, other members can continue 
with other modules of the chip to keep us on track. 

Personnel Effort Requirements 
Our task list is constantly evolving, making it difficult to assign expected work hours to 
dedicated tasks. Time estimates can be easily skewed by factors such as the number of 
work sessions and length of time spent by each member, which can vary in efficiency 
depending on the day. 

Task Projected Hours Actual 
Workflow Tools/Setup 40 Hours 40 Hours 
November Chip Design 20 Hours 30 Hours 
Project Design 100 Hours 200 Hours 
Integration 60 Hours 100 Hours 
Testing/Verification 40 Hours Ongoing (currently>50) 
Documentation 40 Hours Ongoing (currently>40) 

Table 1: Projected Hours 

We have completed design and individual testing of all our modules, and are currently 
working on integration of major components such as the CyGRA into our microcontroller. 
We underanticipated how complex our CyGRA would be, which has been a major 
contributing factor to our design time. 
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Other Resource Requirements 
Tools and work environments that are beneficial to larger team productivity have been very 
helpful in this project. As such, we contacted ISU’s ETG (Electronic and Technology Group) 
that helps support senior design teams to create a virtual machine to work on. This has 
allowed us to work collaboratively remotely and ensure our environment has identical 
variables to reduce errors relating to the setup of the tools we use. We have used this 
virtual machine to build the RISC-V toolchain as well as generate benchmarks from 
embench-iot. 

Beyond this, we have also accessed and used the tools provided by the ISU ChipForge 
club. This has allowed us to run system tests on an Artix FPGA board in Durham, which has 
provided valuable feedback on our design and development. 

Design 

Design Context 

Broader Context 

One of our main goals in designing this project was to keep the technology accessible. To 
support this, we used only open-source tools and made all our designs open-source, 
allowing others to expand and improve upon them. This ensures that our final deliverable 
serves as a valuable education and research resource to help other students and teams 
gain entry into the field of hardware design. 

Below is a table of some considerations we made when designing and developing our 
project: 

Area Description Example 

Public Health, safety, and 
welfare 

How does your project 
affect the general 

well-being of various 
stakeholder groups? 

Our product gives students 
hands-on experience with a 

real processor fabricated 
on an IC rather than 

software simulations and 
FPGAs. The programmable 

aspect of the project can 
help students test designs 

and learn Hardware design. 

Global, cultural, and social How well does your project 
reflect the values, 

Our project adds to the list 
of open-source designs that 

the global electrical and 
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practices, and aims of the 
cultural groups it affects? 

computer engineering 
community can use and 

expand upon. 

Environment 
What environmental impact 

might your project have? 

Custom instruction can 
make some processes take 

less instructions and less 
energy, which can add up 
when done many times. 

Economic What economic impact 
might your project have? 

Our product is open source 
which lets anyone use it. 
This saves people from 

having to develop a design 
of their own, which saves 

them money. 
Table 2: Broader Context 

Prior Work/Solutions 

Nios® V/g General purpose Processor from Intel 

• Processor Overview: 
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-
3/processor-87132.html 

o 32-bit RISC-V processor 
o FPGA implementation of processor 
o Come with Quartus® Prime Pro Edition 

• Custom Instruction Overview: 
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/p
rocessor-custom-instruction-overview.html 

o Processors support non-branching custom instructions 
o Selected by a mux choosing between the ALU and Custom Instruction Unit 

during the execution state of the pipeline. 
• Benefits and Drawback compared to our design 

o Benefits: 
▪ Supports 32 Custom Logic Blocks 
▪ Has an Integer Multiplication and Division Unit 
▪ Has a floating-point unit 
▪ Pipelined 
▪ Faster frequency max on popular FPGAs 

o Drawbacks: 
▪ FPGA based 

https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-87132.html
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-87132.html
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/processor-custom-instruction-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/processor-custom-instruction-overview.html
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• Required user to have an FPGA 
• Larger Area 

▪ Can not fabricate as an IC 
▪ Cannot re-program custom instruction during run time 
▪ Not free (requires Quartus® Prime Pro Edition) 

Arm Custom Instructions 

• Paper: https://armkeil.blob.core.windows.net/developer/Files/pdf/white-
paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf 

o Available with Cortex –M33, Cortex-M55, and Cortex-M85 
o Arm Architecture 
o Programable Instruction 
o Used in the Execution stage of the pipeline 

• Benefits and drawbacks compared to our solution 
o Benefits 

▪ Available on Arm processors 
• More features 
• Faster 

▪ Custom Instruction solution more intricate 
• Can pipeline custom instruction 

o Drawbacks 
▪ Neither Arm nor Arm Custom Instructions is open source 
▪ Complicated to use 

 

Sources with citations: 

[1] “4. Nios® V/g Processor,” Intel, 2024. 
https://www.intel.com/content/www/us/en/docs/programmable/683632/24-3/processor-
87132.html (accessed Dec. 08, 2024). 

[2] “1. Nios® V Processor Custom Instruction Overview,” Intel, 2023. 
https://www.intel.com/content/www/us/en/docs/programmable/773194/current/process
or-custom-instruction-overview.html (accessed Dec. 08, 2024). 

[3] J. Yiu, “Innovate by Customized Instructions, but Without Fragmenting the 
Ecosystem,” 2021. Accessed: Dec. 08, 2024. [Online]. Available: 
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-
instructions-without-fragmentation-whitepaper.pdf 

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf
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Technical Complexity 

Our project has multiple complex components that need to work together. Finishing the 
project will require the following tasks. 

• Deciding on an open-source ISA softcore to serve as the main compute unit 
• Creating a CyGRA (Coarse-Grained Reconfigurable Architecture) co-processor to 

implement custom instructions 
• Designing a memory interface and caching unit to manage on- and off- chip memory 
• Implementing a SPI master interface to communicate with the off-chip SRAM 
• Modify a Wishbone slave interface to enable communicate and data transfer to the 

user project area (including writing processor code to memory) 
• Integrate all components into a complete system, allowing users to configure the 

CyGRA to execute custom instructions alongside the main softcore 

Design Exploration 

Design Decisions 

For our project, we made several important design decisions, outlined below: 

• Using an open-source ISA 
 Selected the RISC-V ISA 
 Simple, fully open-source, widely adopted 
 Commonly used and taught in universities and research settings 

• Selecting the PicoRV32 softcore 
 Relativity easy to integrate into our design 
 Includes a built-in co-processor interface, simplifying integration of the 

CyGRA 
 Size-optimized, occupying only  0.6 x 0.6 mm2 within the SkyWater 130nm 

process 
• Implementing a Coarse-Grained Reconfigurable Architecture (CyGRA) for custom 

instructions 
 Complex module to design 
 Challenging to integrate effectively into the overall system 
 New area for our team, requiring new research and learning 

An important consideration throughout our design process was ensuring that all chosen 
components and designs were fully compatible with the Efabless Caravel platform and 
toolchain. Every decision had to account for both smooth integration between 
components and support within the Caravel wrapper. This was the main reason we did not 
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consider the MIPS ISA, despite our team having experience with it through various ISU 
classes. 

Ideation 

When looking for an open-source processor design, we had some suggestions from our 
advisor and found options online. Below are the designs we found and considered. 

Rocket Chip Neorv32 Vex RISC-V CVA6 PicoRV32 

- RISC-V 64 bit 
- Feature rich 
- Not size optimized 
- Written in chisel 

- RISC-V 32 bit 
- Designed as a 
microcontroller 
- Not size optimized 
- Written in VHDL 

- RISC-V 32 bit 
- Highly customizable 
- Not size optimized 
- Written in 
SpinalHDL 

- RISC-V 64 bit 
- Support for UNIX-
like operating 
systems 
- Not size optimized 
- Written in System 
Verilog 

- RISC-V 32 bit 
- Wishbone interface 
and high clock 
frequency 
- Size optimized 
- Written in Verilog 

Table 3: Comparison of various softcores that were considered for our project  

Decision-Making and Trade-Off 

When deciding between the different RISC-V softcore designs we established a few criteria 
to rank the designs we found. The criteria are as follows: 

• Instruction Set 
 Used to categorize processors based on their supported architecture (32-bit 

or 64-bit) 
 Determine which processors supported the most extensions of their given 

ISA (i.e. RV32I vs RV32IM) 
• Written Language 

 Since the Efabless process and Caravel requires designs in Verilog, we 
prioritized processors written in Verilog for ease of integration 

• Features 
 Assessed additional capabilities included in the base design, such as Linux 

compatibility or built-in Wishbone interface 
• Size Optimization 

 Considered whether the processor’s repository specifically mentioned size 
or space optimization – critical to our design as the Efabless Caravel has a 
limited user area of 2.92 mm x 3.52 mm (10mm2), which must fit both the 
processor, memory, and custom co-processor 

 

After consideration, we decided to use the PicoRV32 as our RISC-V softcore. The reason 
that we decided on this was for a couple of reasons. First off, it was written in Verilog which 
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allows us to easily integrate it into the Efabless Caravel. Secondly, it is a size optimized 
design, which is important considering the space available in the user area, allowing us to 
dedicate more space to other components. Lastly, it includes a Wishbone interface, which 
we can use to integrate with the management area of the Caravel. 
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Final Design 

Overview 

Figure 6: High-level design contained within the user area 
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Figure 7: Synthesized Layout of Circuit 

The high-level design (as seen in figure 6) consists of two main areas, the management 
area, and the user project area. The management area is provided as is from Efabless and 
contains a VexRISCV processor integrated with a Wishbone which provides the clock, 
reset, and buses for communication into the user project area. Additionally, the 
management area provides logic analyzers so that after fabrication you can still probe 
sections of the user area for testing to ensure things are working as expected. The 
management area also has flash inputs which allows the user to load programs onto the 
VexRISCV processor. 



sdmay25-28 | 26 
 

   
 

The user project area is a ~10mm2 section where our design is placed into. It has access to 
34 GPIO ports, allowing us to set them as either input or output depending on what is 
needed, such as for the off-chip memory as seen in figure 6. Within the user area is the 
PicoRV32, CyGRA, memory system, and cache memory.  

 

Figure 7 shows the synthesized layout of the user_project_wrapper. The larger rectangle on 
the bottom is the wrapper containing the PicoRV32, Memory System, and CyGRA. The 
wrappers area is 2.5 mm x 1.8mm which is 4.5 mm^2. The two smaller rectangles on the 
top are the DFFRAM modules, they both have an area of about 1mm^2. 

Detailed Design and Visuals 

PicoRV32 

The PicoRV32 is a size optimized RISC-V 32-bit processor, which we have chosen to be the 
main compute unit for our design. The PicoRV32 is a non-pipelined processor, meaning 
that it only runs a single stage at a time (as shown in figure 8). 

 

Figure 8: PicoRV32 Datapath 

This processor supports the full set of standard 32-bit RISC-V instructions but also allows 
for custom instructions through a co-processor interface, which triggers when an unknown 
instruction is decoded. We leverage this interface to seamlessly integrate the CyGRA with 
minimal overhead into the main processor. Below is an example of how the pipeline 
operates with the CyGRA:  
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1. Fetch stage 
a. Fetch the next instruction from memory 
b. Decode the fetched instruction and set control signals 
c. Write back the results of the previous instruction to the register file (if 

needed) 
2. Decode stage – Splits into one of five stages (listed below) 

a. Memory read: for load instructions 
b. Memory write: for store instructions 
c. Shift: for shift operations 
d. Execute: for all other standard instructions 
e. CyGRA: for custom instructions handled by the CyGRA 

Once a stage is completed, control returns to the Fetch stage. The memory Read and 
Write, Shift, and Execute stages all transition directly back to Fetch. However, the CyGRA 
stage routes through an additional Decode stage before returning to Fetch. Below is a table 
showing the cycles per instruction (CPI) for standard (non-custom) instructions, as 
documented in the PicoRV32 readme, along with their runtimes based on a 40 MHz clock 
speed (the max clock speed provided in Caravel). 

Instruction Jump and 
link 

ALU reg + 
Immediate 

ALU reg + reg Branch (not 
taken) 

Memory load Memory 
store 

Branch 
(taken) 

Indirect 
jump 

Shift 
operations 

CPI 3 3 3 3 5 5 5 6 4-15 

Runtime 75 ns 75 ns 75 ns 75 ns 125 ns 125 ns 125 ns 150 ns 100ns-
375 ns 

Table 4: Expected CPI and runtime for the PicoRV32 
Note: The memory figures above assume single cycle read/write memory, which is unrealistic for our project. A cache hit 
may produce a CPI and runtime like above, but a cache miss would result in a high CPI and slow runtime due to SPI being 

only able to transfer one bit at a time 

Our aim for custom instructions is to take 3-30 CPI depending on which instruction is being 
executed, meaning that the runtime would range from 75ns to 750ns. 

The PicoRV32 writes and reads memory over our implemented memory interface 
(described later in this section). 

CyGRA 

The CyGRA is our custom coprocessor consisting of an array of 4 processing elements 
arranged in a 2 by 2 grid that is capable of reading and writing directly to and from memory. 
Each processing element contains its own register file, containing 32 registers, and this 
helps lower the amount of DMA or DMO commands that are necessary. There is a stage 
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counter which keeps track of the amount of stages/cycles that will be necessary for the 
command to work appropriately.  

  

Figure 9: CyGRA 

Processing Elements 

Each processing element consists of an ALU, register file, and input muxes capable of 
integer arithmetic as well as data passthrough. Each processing element is capable of 4 
operations: addition, subtraction, multiplication and passthrough. Passthrough is used to 
enable shuffling of data between register files. 
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Memory System 

 
Figure 10: Memory subsystem 

The Memory System provides interfaces for the Wishbone Slave, PicoRV32, and CyGRA to 
interact with. The Memory System decides which component has access to memory.  If 
nLoadInstructions is low, then only the Wishbone Slave access memory. If 
nLoadInstructions is high, then either the PicoRV32 or CyGRA can access memory. The 
PicoRV32 has priority over the CyGRA (If both try to access memory, the PicoRV32 will be 
given access.) 

The Memory System manages memory between the On-chip cache memory and Off-Chip 
SRAM. The Memory System uses a write-through cache with a write allocation policy, 
meaning the cache will get written on all writes and read misses. This results in 
considerable performance improvements when running programs. 

On-chip memory 

Consists of two pre-hardened open source 512x32 DFFRAM modules. This works as cache 
memory for higher performance. It works in tandem with the Off-chip memory to ensure a 
large but fast memory system. 

Off-chip memory 

512 Kbit SRAM PMOD module that communicates with the design over SPI. This acts as the 
RAM as seen in a typical system, allowing us to load larger programs without using the 
entire user space for memory  
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SPI master unit 

The SPI master unit is a modified Efabless SPI master unit, designed to allow the memory 
controller to read and write, over SPI, to the off-chip SRAM PMOD module. 

Wishbone slave 

Reads data sent from the Management Area. The Management Area sends instruction 
memory and other data needed for programs to run on the PicoRV32. This includes 
programming the memory for the PicoRV32 to run programs. 

Functionality 

The user can write a C program, which can be compiled to hex by the make_firmware.py 
python script. This hex can be flashed to the Caravel chip using ChipForge tools 
(documentation on how to do this is provided in the ChipForge GitLab). 

After flashing the hex firmware, instruction memory will be written to the user area memory 
using the Wishbone bus. During this process, the PicoRV32 remains idle, waiting for 
nLoadInstructions to go high. Once the VexRISCV completes writing, nLoadInstruction 
goes high and the PicoRV32 begins reading instructions from memory and executes them. 

Our CyGRA is designed so that the user first loads a configuration, then inputs data, and 
can repeatedly execute the same configuration with different data without reloading the 
configuration. A configuration consists of the dataflow of where each processing element 
receives its data from, which address in its own register file that it writes to, and what 
operation it performs on the input data. Combined with the ability to specify multiple stage 
configurations, where for each clock cycle that the CyGRA executes, a new configuration is 
used, complex dataflows such as linear algebra operations or FFT are facilitated.   

We have created a file that includes how to encode your own functions and common 
functionality and computations that we can use. For example, we have a function called 
mac(), this will allow anyone unfamiliar with the project to perform their own multiply and 
accumulate function without knowing anything about the CyGRA itself. We also have DMA, 
DMO, CFG, and COM commands which with the proper inputs will create custom 
instructions for the user to use, without little to no knowledge of the CyGRA. All these 
functions can be used in a user’s own program to help accelerate whatever they desire. 

Areas of Challenge 

One of the major challenges we faced during development was the CyGRA. Initially, it was 
difficult to determine how to structure it as we weren’t sure which functions we wanted to 
accelerate. Even after identifying our target functions, we struggled to find the best design 
approach. We quickly learned that aiming for a perfect solution from the start was 
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unrealistic; progress came through iteration and experimentation. Over the course of 
development, we revised the CyGRA design four or five times to better meet our needs and 
improve various features such as useability and complexity. This iterative process was 
essential, and we learned that the most important step is often just getting started even if 
the initial design isn’t perfect.  

This iterative process also gave us valuable opportunities to receive feedback from our 
advisor, Dr. Duwe. With each new design iteration we presented, he provided us with 
insightful feedback and pointed us towards additional resources to refine and strengthen 
our approach. This cycle of improvement continued until we arrived at our final design that 
we are very proud of. 

Overall, we successfully met our client’s goals by delivering a non-trivial design that 
enables students to engage hands-on with bringing up a new chip for the ISU ChipForge 
club, while also exploring advanced technologies like Coarse-Grained Reconfigurable 
Architecture. 

Technology Considerations 

The Efabless design process requires the use of specific open-source tools, with 
OpenLANE being the primary tool. While these tools are well-documented, they are not 
particularly user-friendly, which can make them challenging to use at times. Fortunately, 
Efabless provides scripts and configuration files that automate much of the process, 
allowing us to complete most tasks without needing to delve deeply into the inner workings 
of each individual tool. 

Testing 
Our overall testing plan is illustrated in Figure 11. In summary, we begin by running 
testbenches for each individual module using Questasim. Once these pass, we proceed to 
RTL simulation of the fully integrated system, where we run system-level tests using 
Cocotb to verify correct functionality. Next, we perform FPGA testing to confirm the design 
operates correctly on physical hardware; this stage also allows us to test GPIO 
functionality, such as interfacing with the SRAM PMOD module. Finally, we conduct gate-
level tests of the complete system to ensure the chip’s hardening process did not 
introduce any errors. 
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Figure 11: A state diagram showing the testing flow we used during the project 

Unit Testing 
• PicoRV32 

o Tested with QuestaSim testbenches 
o Verified reading and executing instructions and programs in RTL simulation 

▪ Working merge and bubble-sort 
• CyGRA 

o Tested with QuestaSim 
▪ Validate custom instruction execution 
▪ Test each CyGRA component independently 
▪ Test entire integrated unit 

• Internal Memory 
o Testing using Questa Sim 

▪ Verify direct read/write operations 
▪ Verify read/write operations through memory interface 

o Tested instruction fetching and memory reading and writing in RTL 
simulation 

Interface Testing 
• Wishbone Slave 

o QuestaSim 
▪ Writing memory interface instructions 

o RTL simulation 
▪ Writing a series of memory interface instructions (PicoRV32 

instruction memory) from management area. 
• Memory Interface 

o QuestaSim 
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▪ Reading/Writing memory into simulated external (non-SPI) and 
internal memory. 

▪ The above tested using Wishbone Slave and PicoRV32. 
o RTL simulation 

▪ Writing instruction memory through the wishbone bus. 
▪ Reading and Writing memory from external memory using simulated 

Verilog module of SRAM. 
▪ Cache operations for all scenarios (Write, Read Miss, and Read Hit) 

• SPI Main 
o QuestaSim 

▪ Reading and writing from simulated SPI Slave. 
▪ Reading and writing instructions through memory interface. 

o RTL simulation 
▪ Reading memory based on signals from Memory Interface and 

simulated SRAM. 
 

Integration Testing 
• Wishbone Slave, Memory Interface, SPI Main, External Memory. 

o Path while writing instruction memory from management area. 
o QuestaSim 

▪ Fully tested writing memory via simulated Wishbone inputs. 
o RTL simulation 

▪ Fully tested writing instruction memory via Wishbone. 
• PicoRV32, Memory Interface, Internal Memory, External Memory, SPI Main. 

o Path involved with the execution of non-custom instructions. 
o QuestaSim (excluding SPI Main memory) 

▪ Fully tested reading/writing memory and non-memory instructions 
o RTL simulation 

▪ Tested several example C programs that cover all RISCV32I 
instructions 

• CyGRA, PicoRV32, Memory Interface, Internal Memory, External Memory, SPI Main. 
o Path involved with the execution of custom instructions. 
o RTL simulation 

▪ Tested MAC and FFT programs using custom instructions 
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System Testing 
• RTL Simulation 

o Tested Mac and FFT programs using custom instructions 
• FPGA Testing 

o Running embench-iot benchmarks, we modified them for our system so that 
the benchmarks will run as standalone files, removed all dependencies to 
libraries and other things that is not on the FPGA, and created 2 variants for 
each benchmark, one that is standard and another that has our CyGRA being 
utilized and executing. 

 

Regression Testing 
Our regression testing framework ensures that changes to the project do not 
unintentionally alter the expected behavior. We leverage CI/CD pipelines for each 
repository to automatically run regression testing whenever changes are committed. The 
pipeline executes relevant testbenches for all files, and if any test fails, the issue is flagged 
in the pipeline and team members are notified via email to prevent further regression. 
When a change in behavior is intentional, we document it clearly and update the 
corresponding testbenches to align with the new requirements. 

Acceptance Testing 
Our acceptance testing ensured that we met the key performance metrics defined earlier, 
which are critical to verifying that the CyGRA delivers the expected impact. After hardening 
our design, we will validate that the user area passes Efabless’s precheck process, 
confirming that the physical layout matches the Verilog design. The Efabless precheck also 
runs DRC and LVS tests to identify any potential fabrication issues, ensuring the design is 
ready for production. 

Results 
The results from our tests primarily take the form of waveform outputs, which provide a 
detailed view of signal behavior. These waveforms were carefully analyzed to verify that the 
design meets our defined performance and functional metrics, such as correct instruction 
execution, timing accuracy, and data integrity. Beyond initial validation, waveform 
comparisons also played a key role in our regression testing framework. By using 
waveform-based verification, we could see that any changes to the design do not 
unintentionally later the expected behavior. Automated tools (like CI/CD) are employed, 
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when possible, to check results of testbenches, allowing us to quickly identify issues and 
address them before they escalate. 

Since the CyGRA took much more time than anticipated to design. We didn’t have much 
time to test its functionality. Currently, we know it works properly for single configuration 
instructions but are unsure of instructions with more than one configuration. We also 
haven’t had time to do FPGA or GL tests, which are important to verify if our fabricated chip 
would function properly. 

Implementation 
We have currently built a product that is able to execute custom instructions as described 
in our final design sections. We have also synthesized a layout via OpenLANE that could 
theoretically be fabricated, although the project is not in a state where it should be 
synthesized due to the lack of FPGA and GL tests. Hopefully, these tests can be performed 
in the future to verify the functionality of our project so it can be synthesized. 

Design Analysis 

The design is currently able to run all C programs that don’t contain any custom 
instructions. This has been verified with many C programs. Our CyGRA can execute all 
single config instructions and some multi-config instructions. We have arrived at this 
conclusion based on the current testing we have done (MAC and FFT). 
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Ethics and Professional Responsibility 
Our team defines engineering ethics as a commitment to uphold the integrity, 
transparency, and accountability in all aspects of our project. For our project, professional 
responsibility extends to producing open-source hardware and software that contributes 
positively to the academic and engineering community. Throughout the project, we have 
aimed to act in good faith, communicate openly, and ensure that all decisions we have 
made are backed by solid engineering principles. Our overarching philosophy is that 
engineering education should be accessible, ethical, and contribute to the betterment of 
the broader community. 

Areas of Professional Responsibility/Codes of Ethics 

Area of 
Responsibility 

Definition Corresponding IEEE 
Ethics Code 

Team interaction 

Work 
Competence 

Our definition of work 
competence is making 
sure that we are 
working to the best of 
our abilities and that we 
are being honest with 
each other if we are not 
completely confident in 
our abilities to perform 
a task. 

6. to maintain and 
improve our technical 
competence and to 
undertake technological 
tasks for others only if 
qualified by training or 
experience or after full 
disclosure of pertinent 
limitations 

Our team ensured that 
we carried out each 
task to the best of our 
ability given time 
constraints and tried 
not to promise 
anything we couldn’t 
deliver and addressed 
limitations 

Financial 
Responsibility 

Our definition of 
financial responsibility 
is making sure that we 
are not misusing funds 
for our project and 
making sure that we are 
making it properly open 
source so that others 
can learn from our work 

4. To reject bribery in all 
its forms 

Our team ensured that 
our project was 
completely open 
source and at the 
minimum cost to 
anyone wanting to 
replicate our work and 
were transparent with 
our client and 
stakeholders on the 
cost of production or 
desired components 
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Communication 
Honesty  

Our definition of 
communication 
honesty is making sure 
that we are being 
honest with how and 
what our project can 
perform as well as 
being honest with our 
team members and our 
client/advisor 

3. To be honest and 
realistic in stating claims 
or estimates based on 
available data 

We maintained clear 
and honest 
communication with 
all stakeholders 
ensuring our technical 
reports and progress 
were reported 
accurately 

Health, Safety, 
Well-being 

Our definition of health, 
safety, and well-being is 
making sure that we are 
making a project that 
will improve people’s 
lives through learning 
and not negatively 
affect others 

1. to hold paramount the 
safety, health, and 
welfare of the public, to 
strive to comply with 
ethical design and 
sustainable development 
practices, to protect the 
privacy of others, and to 
disclose promptly factors 
that might endanger the 
public or the environment 

Our team focused on 
the technical 
development of our 
project and disclosed 
any information that 
could be problematic 
in a digital 
environment and were 
conscious in the cost 
and use of resources 

Property 
Ownership 

Our definition of 
property ownership is 
making sure that our 
project is properly being 
used and that we are 
properly handing our 
project over once we 
finish it 

9. To avoid injuring others, 
their property, reputation, 
or employment by false or 
malicious action 

Our team has focused 
on ensuring that our 
project and deliverable 
will persist long after 
the end of this project 
to serve as an 
available educational 
tool for future students 

Sustainability Our definition of 
sustainability is making 
sure that we are not 
misusing funds or 
negatively affecting the 
environment more than 
needed (due to the 
fabrication process) 

1. To accept responsibility 
in making decisions 
consistent with the safety, 
health, and welfare of the 
public, and to disclose 
promptly factors that 
might endanger the public 
or the environment 

Our team focused on 
ensuring that our 
project is sustainable 
by making it open 
source as well as by 
making this a resource 
for students to use for 
years to come 
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Social 
Responsibility 

Our definition of 
sustainability is making 
sure that our project is 
used to help others and 
that everyone will be 
able to use our project 
no matter age, race, 
gender, etc. 

2. to improve the 
understanding by 
individuals and society of 
the capabilities and societal 
implications of conventional 
and emerging technologies, 
including intelligent 
systems; 

We have as a team 
troubleshooted at 
every turn in our 
project and done 
research to make each 
component open 
source and picked IP 
that is projected to be 
supported well into the 
future 

Table 5: Code of Ethics 

One area of responsibility we are doing well in is communication. We keep constant 
contact with each other and exchange information and progress frequently. 
Communication is the bedrock of a good team and is indicative of strong performance 
because efficient communication leads to good task delegation and progress. 

One area of responsibility we could improve is social responsibility. Currently our project is 
very technical and difficult to learn from, this could be unfair to those with less resources 
and less experience. To address this, we can make sure our project has documentation 
that properly explains the technologies that are being used and provides resources for 
them to use. 

Four Principles 

Table 6 6: Four Principles Table 
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One important broad context-principal pair for our project is Economic – Beneficence. We 
all want to contribute something to the knowledge of Computer Engineering and to 
contribute and support the open-source community, and our project is a good way to do 
both. We will ensure that our project remains open source to anyone that wishes to use it. 

One broad context-principal pair that our project will be lacking in is environment and 
Nonmaleficence. We cannot ensure that our project isn’t wasteful, someone could 
theoretically use the CyGRA in a way that is inefficient and therefore wasteful of power. 
However, we do think that the potential power that can be saved by an efficiently used 
CyGRA will outweigh the negatives for inefficient use. 

Virtues 
Our team believes that the three most important virtues are Integrity, Communication, and 
Respect. Integrity to us means to upload honesty for the team no matter what as well as 
being transparent with both each other and our advisor and client to build trust and 
respect. Communication helps us ensure we are always in talks with each other about the 
project and where we are so everyone can get a good sense of progress. Respect means 
for us to be kind and understanding of others in the event of difficulties or other reasons 
and to always be understanding. 

Camden:  

Virtue Demonstrated -– Communication 

To support communication and trust I keep in contact with the team and lead team 
meetings to help foster a successful and friendly environment for the whole team, so 
everyone feels safe to talk about whatever they need, good or bad. 

Virtue Undemonstrated -– Self-discipline 

One of the things I have struggled with both in this project and in life is self-
discipline. Overall, I don't feel as if I have put in as much time as I have both wanted to and 
should, leaving my teammates on the hook for a bit more work than I would prefer. I want 
to be the best teammate I can and hope to improve on this next semester. 

John:  

 Virtue Demonstrated – Honesty 

One virtue that I have demonstrated is honesty. I have been honest with my team 
members; I believe that this is important because it shows that I am respectful to those on 
my team. I also want my team to see me as trustworthy and that I do what I say. I have 
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shown this virtue through our meetings where I am honest with what I have completed and 
the reasonings for not completing something. I am also honest when I do not completely 
understand something, this makes sure that I am understanding and not just pretending. 

 Virtue Undemonstrated – Self-discipline 

One virtue that I have not demonstrated is self-discipline, at least not enough of it. I 
have not been putting enough time into working on senior design as I would like. I do think I 
have been slacking a bit on my contributions and feel like it is disrespectful to my team not 
to do more. I will make sure that I not only contribute more time to senior design, but also 
that I work earlier in order to be able to contribute more and to give us more time to fix 
issues.  

Nicholas: 

Virtue Demonstrated – Diligence 

One virtue that I have demonstrated is diligence. If I have a task I need to do, I will 
always strive to work hard towards completing that task. Through the beginning of the 
project, I spent most of most time out of everyone learning the Efabless tools and spending 
long periods of time trying to resolve issues I had while learning so I could help my 
teammates with it in the future. I was able to complete a full project by the beginning of 
November, which helped give me a good knowledge of Caravel and OpenLANE before 
anyone else in my group. 

Virtue Undemonstrated – Being Collaborative 

One virtue that I have not demonstrated is being collaborative. Out of everyone in 
the group, I spent most of my time alone doing my own thing, which had some benefits but 
is outweighed by not having anyone else able to work on your tasks. I hope to fix this by 
communicating my progress and teaching my other group members more about my work 
so they can help me complete tasks in the future. 

Calvin: 

Virtue Demonstrated – Humility 

Throughout the beginning of the design process, we have run into many difficulties 
when it has come to making decisions about the scope of our project and the design itself. 
As a rule, I tend to have my head in the clouds in relation to ideas, and I tend to be very 
stubborn about changes that others suggest for these ideas. Because I find myself lacking 
in this area, humility is very important for me to be able to work in a team and client driven 
environment. Throughout this first semester I have made an active effort to maintain 
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humility regarding making decisions as a team, as well as readily accepting feedback from 
our advisor and client as to our direction 

Virtue Undemonstrated – Clarity 

When you are designing a product that other people in the future will learn from, or 
that they might find use in, you have to keep in mind the ease of use from their perspective. 
Your code cannot be inscrutable if you want others to find value in it. So far, I have been lax 
on demonstrating clarity due to all the code I’m writing being test code, but going forward 
into the next semester, I hope to make an active effort toward all production code being 
well organized and readable, with clear documentation and comments. 

Levi: 

Virtue Demonstrated – Adaptability 

As our project has progressed our project has changed and adapted and the 
perceived skillsets and assumed roles of some people in our group have changed. For 
myself I started off as a client interaction lead, then a integration lead, and now that role is 
refined more to a SPI/Serial Communications lead (WISHBONE & SPI) and maintain our 
website. I think I have managed well with picking up different hats and not dying on a hill of 
needing to play a specific part. I originally wanted to be the Caravel lead but after that role 
was already taken, I found a new role that still lets me interact with caravel in ways I want 
to, but contributing something else the team will value more. 

Virtue Undemonstrated - Self-discipline 

One virtue I haven’t displayed well this semester is self-discipline. This semester 
has been the busiest semester I’ve had in college, and the group I am working with for the 
project is extremely competent and capable. It has been easy during this project to after a 
long week of school, to not focus on senior design for the weekend because I know it will 
all be fine. I think I could take more initiative in the next semester and use more of my free 
time to work on this project to help my teammates and let them know how much I value 
them and give them time to slack off in turn. 
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Closing Material  

Summary of Progress 
Overall, we have successfully completed the majority of milestones set for our project. 
Although we encountered some setbacks, such as Efabless shutting down, these 
challenges had minimal long-term impact on our progress. Over the course of the project, 
we were able to maintain on track and ensure that the project reached a near-final state by 
the end of the semester. 

Over the course of the year, our team became proficient with the Efabless platform and the 
suite of open-source tooling required to harden and prepare our design for fabrication. We 
carefully planned and executed the implementation of the chip, integrating the CyGRA to 
serve as an instruction acceleration unit. In addition, we carried out extensive testing, both 
in simulation and hardware, to validate the functionality and performance of our design. 

Since Efabless shutdown mid project, we were able to take advantage of the extra time to 
refine our testing procedures to ensure they met a high standard of reliability and 
thoroughness. We also used this time to further optimize the performance and complexity 
of the CyGRA unit. 

While there is no confirmed plan for our chip to be fabricated, we have ensured that our 
design is hardened and ready should the opportunity arise in the future.  

Value Provided 
Our current chip design offers a valuable learning experience for users at all skill levels. 
With great depth in both hardware, software, and system bring up, this project allows 
ChipForge and hardware students to gain hands-on experience with some exciting 
technologies like Coarse-Grained Reconfigurable Architecture, while also deepening their 
knowledge of processor architecture and ISA extensions, enabled by the CyGRA’s 
integration. 

In addition, members of the ISU ChipForge club have the unique opportunity to work on 
bringing our design to life, should the chip be fabricated. This experience would allow 
students to get hands on with a new platform they don’t have any background on. This will 
allow them to gain advanced problem-solving skills and broaden their technical skillset. 
For more advanced members of the club, they can use this chip as an opportunity to learn 
about reconfigurable architecture and further expand on it in the future as all of our 
designs are open source. 
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Next Steps 
Although there are currently no plans for this chip to be fabricated during our time working 
on it, our design leaves room for future improvements and innovations. One key area for 
enhancement is the CyGRA; by designing a larger and more space-efficient version, future 
teams/ChipForge could expand on both the performance and capabilities, such as 
enabling support for more complex instructions or a broader acceleration use case. 

We would also like to see GL tests and FPGA tests to confirm the functionality of our 
design and verify that it is ready to be fabricated. Additionally, we would like to see formal 
benchmarks run on our design to get an idea of the performance improvements provided 
by our design and to ensure the CyGRA functions fully as intended. 

Ultimately, the most impactful advancement we hope to see in the future is the ISU 
ChipForge club fully fabricating this chip. Seeing our design and the hard work we have put 
into it coming to life would be deeply rewarded to use as a team, as well as offering 
students and the club an invaluable opportunity to engage with a real-world chip bring-up 
process.  
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Appendices 

Criteria 
Rocket Chip  PicoRV32  

(Chosen)  

Neorv32  VexRiscV  CVA6  

Instruction 
Set 

RV64I + 
IMAFDC  

RV32I + MC  RV32I +   
Zicsr  

Zifencei  

RV32I + M  RV64I + MAC  

Written 
Language 

Chisel  Verilog  VHDL  SpinalHDL  
(Scala)  

SystemVerilog  

Features 

Everything  
+ ROCC  

-Multiplication  

-Wishbone 
Master 
interface  

-Compressed 
Instructions  

-Axi interface  

-PCPI 
interface  

-CSR 
instructions  

-Instruction-
fetch fence  

  

-Multiplication  

-Wishbone 
ready  

  

-Linux  

-Privilege 
levels  

-   

Size 
optimization 

No  Yes  No  No  No  

Table 6: RISC-V Core Decision Matrix 

Operation Manual 
Our operation manual for the CyGRA can be found at the following link (access controlled):  

https://iowastate.sharepoint.com/:w:/s/ISUChipFab/Ea79wAZdrZdDgTErzOgcYBsBxC84tl
5nymkmQ5gZ1IjFbg?e=WBZLoA  

Alternative/Initial Version of Design 
• Design using an FPGA 

o Too large to implement chip 
• Design without External Memory 

o Initial plan 

https://iowastate.sharepoint.com/:w:/s/ISUChipFab/Ea79wAZdrZdDgTErzOgcYBsBxC84tl5nymkmQ5gZ1IjFbg?e=WBZLoA
https://iowastate.sharepoint.com/:w:/s/ISUChipFab/Ea79wAZdrZdDgTErzOgcYBsBxC84tl5nymkmQ5gZ1IjFbg?e=WBZLoA
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o External Memory added to increase memory space 
o Internal memory became cache memory 
o Required the implementation of the memory interface 

Relevant code 
• DFFRAM GitHub repository: https://github.com/efabless/OL-DFFRAM 
• Gitlab group: https://git.ece.iastate.edu/sdmay25-28 
• Processor repositories: 

o Caravel project (also contains make_firmware script):  
https://git.ece.iastate.edu/sd/sdmay25-28/tree/final 

o CyGRA: https://git.ece.iastate.edu/sdmay25-28/accelerator  
o Pico Processor: https://git.ece.iastate.edu/sdmay25-28/pico_processor  
o Memory controller: https://git.ece.iastate.edu/sdmay25-

28/memory_controller  
o SPI Unit: https://git.ece.iastate.edu/sdmay25-28/spi_master  

• FPGA Test repo: https://git.ece.iastate.edu/sdmay25-28/caravel_fpga_tests 
• November test chip: https://git.ece.iastate.edu/sdmay25-28/nov-chip 
• Embench-iot repo: https://github.com/embench/embench-iot 
• Chip Forge repo (access controlled):  https://git.ece.iastate.edu/isu-chip-fab 

Team 

Team Members 

1. Camden Fergen 
2. John Huaracha 
3. Nicholas Lynch 
4. Calvin Smith 
5. Levi Wenck 

Required Skills Sets 

• Digital VLSI  
• Hardware Design 
• Regression testing 
• Teamwork 

Skills Set Covered by the Team 

• Hardware Design 
• Software development  

https://github.com/efabless/OL-DFFRAM
https://git.ece.iastate.edu/sdmay25-28
https://git.ece.iastate.edu/sd/sdmay25-28/tree/final
https://git.ece.iastate.edu/sdmay25-28/accelerator
https://git.ece.iastate.edu/sdmay25-28/pico_processor
https://git.ece.iastate.edu/sdmay25-28/memory_controller
https://git.ece.iastate.edu/sdmay25-28/memory_controller
https://git.ece.iastate.edu/sdmay25-28/spi_master
https://git.ece.iastate.edu/sdmay25-28/caravel_fpga_tests
https://git.ece.iastate.edu/sdmay25-28/nov-chip
https://github.com/embench/embench-iot
https://git.ece.iastate.edu/isu-chip-fab
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• Electrical knowledge 
• Embedded systems 
• Agile project management 
• CI/CD 
• Analog and Digital VLSI 
• Verilog/VHDL 

Project Management Style Adopted by the Team 

• Agile 

Project Management Roles 

• Camden Fergen – DevOps and Project Lead 
• John Huaracha – Testing Lead  
• Nicholas Lynch – Harden and Verification Lead 
• Calvin Smith – Accelerator Design Lead 
• Levi Wenck – Communication Interfaces Lead 
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Team contract 
Team Procedures 

1. Day, time, and location (face-to-face or virtual) for regular team meetings 

• Team Meeting: Tuesdays, 5:30pm, Senior Design Lab/TLA  
o other meetings are arranged as needed via Discord 

• Meeting with Duwe: Friday, 3:00pm, Durham 353 

2. Preferred method of communication updates, reminders, issues, and scheduling 
(e.g., e-mail, phone, app, face-to-face): 

• Discord - Internal 
• Email, Teams - External 

3. Decision-making policy (e.g., consensus, majority vote): 

• Majority vote 

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will 
minutes be shared/archived): 

• Once the team meeting starts, John will keep track of time. We’ll use an excel 
sheet 

Participation Expectations 

1. Expected individual attendance, punctuality, and participation at all team 
meetings: 

• Be there at least by 6:00, notify 24 hours in advance if you can’t make it 
• Be a team player 

2. Expected level of responsibility for fulfilling team assignments, timelines, and 
deadlines: 

• Ensure all assigned tasks are completed on time. If you are unable to make a 
deadline, let the team know in advance. 

• All tasks must be completed in full by the deadline. 

3. Expected level of communication with other team members: 

• Communicate a lot, there is no such thing as over communicating 
• Let people know what you are working on and when you run into problem when 

needed/when decisions are made 
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4. Expected level of commitment to team decisions and tasks: 

• We expect everyone to commit to the team and to the project  
• Even if a decision is made which you are against, you should be putting in full 

effort 
• Get your tasks done on time and communicate if you won’t be able to 

Leadership 

1. Leadership roles for each team member (e.g., team organization, client interaction, 
individual component design, testing, etc.): 

• Camden Fergen – DevOps and Project Lead 
• John Huaracha – Testing Lead  
• Nicholas Lynch – Harden and Verification Lead 
• Calvin Smith – Accelerator Design Lead 
• Levi Wenck – Communication Interfaces Lead 

2. Strategies for supporting and guiding the work of all team members: 

• Be a nice person 
• Be an understanding person 
• Do good work 

o Documentation/comments 

3. Strategies for recognizing the contributions of all team members: 

• Using some sort of project management tool (Jira, Gitlab, etc.) 

Collaboration and Inclusion 

1. Describe the skills, expertise, and unique perspectives each team member brings 
to the team. 

Calvin Smith: 

- Hardware Design 
- Team software development 
- Basic electrical knowledge 
- Embedded systems 

 Camden Fergen: 

- Digital design/VHDL (CPRE 381) 
- Software development and low level coding (C, Assembly) 
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- Embedded system integration 
- CI/CD 

 Levi Wenck: 

- General Software Development skills & CI/CD (AGILE) 
- Embedded Systems experience & network analysis (Internships) 
- RTL focused CprE Degree 

  John Huaracha: 

- CI/CD & Agile 
- Embedded Systems 
- VLSI (EE 330) 
- VHDL & Verilog 

 Nicholas Lynch: 

- Low Level Programming 
- Basic Analog and Digital VLSI design 
- VHDL & Verilog design 

2. Strategies for encouraging and supporting contributions and ideas from all team 
members: 

- Be open to ideas 
o Understand that not everyone knows everything 

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how 
will a team member inform the team that the team environment is obstructing their 
opportunity or ability to contribute?) 

- Write/document complaint(s) as to help define what the issue is 
(Privately/Publicly) 

- Request a team meeting 
- Communicate the issue with all team members 

Goal-Setting, Planning, and Execution 

1. Team goals for this semester: 

- Have Fun 
- Have a prototype finished 

2. Strategies for planning and assigning individual and team work: 
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- Coordinate tasks during team meetings or on discord. 

3. Strategies for keeping on task: 

- Holding other teammates accountable for their work. 
- Setting deadlines for all tasks. 

Consequences for Not Adhering to Team Contract 

1. How will you handle infractions of any of the obligations of this team contract? 

• Have a team meeting to discuss any issues with everyone present 

2. What will your team do if the infractions continue? 

• Contact course instructors to find a resolution 

*************************************************************************** 

a) I participated in formulating the standards, roles, and procedures as stated in this 
contract. 

b) I understand that I am obligated to abide by these terms and conditions. 

c) I understand that if I do not abide by these terms and conditions, I will suffer the 

consequences as stated in this contract. 

1) John Huaracha      DATE  09/17/2024 

2) Levi Wenck        DATE 09/17/2024 

3) Nicholas Lynch      DATE 09/17/2024 

4) Calvin Smith       DATE 09/17/2024 

5) Camden Fergen      DATE 09/18/2024 
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